SS/SW BASE PAIRS ARE THE ONLY BASE PAIRS INVOLVED IN LONG-RANGE RNA TERTIARY MOTIFS

Main Article Content

Eugene Fedorovich Baulin
Victor Vadimovich Yakovlev http://orcid.org/0000-0003-3532-5297
Alexander Konstantinovich Manakov

Abstract

The structure of noncoding RNAs largely determines their functions. With the rapid growth of experimental data on the RNA secondary structures, the task of predicting its spatial structure becomes the most urgent task of RNA bioinformatics. The ability to predict tertiary base pairs from data on the secondary structure could significantly reduce the operating time and improve the quality of the RNA spatial structure prediction algorithms. In this work, we applied the machine learning algorithm for the problem of RNA tertiary base pairs prediction from data on the RNA sequence and secondary structure. A group of local base pairs was identified that can be predicted with high quality (80% precision, 80% recall). It was also shown that more than 70% of all long-range noncanonical base pairs in RNA are the base pairs of geometric classes Sugar-Edge/Sugar-Edge and Sugar-Edge/Watson-Crick-Edge that correspond to ribose zipper and A-minor tertiary motifs.


 

Article Details

How to Cite
BAULIN, Eugene Fedorovich; YAKOVLEV, Victor Vadimovich; MANAKOV, Alexander Konstantinovich. SS/SW BASE PAIRS ARE THE ONLY BASE PAIRS INVOLVED IN LONG-RANGE RNA TERTIARY MOTIFS. Journal of Bioinformatics and Genomics, [S.l.], n. 1 (13), jan. 2020. ISSN 2530-1381. Available at: <http://journal-biogen.org/article/view/194>. Date accessed: 22 oct. 2020. doi: http://dx.doi.org/10.18454/jbg.2020.1.13.1.
Section
Structural bioinformatics
References
1. Watson J. D. Involvement of RNA in the Synthesis of Proteins: The ordered interaction of three classes of RNA controls the assembly of amino acids into proteins //Science. – 1963. – Т. 140. – №. 3562. – С. 17-26. https://doi.org/10.1126/science.140.3562.17
2. Hollands K. et al. Riboswitch control of Rho-dependent transcription termination //Proceedings of the National Academy of Sciences. – 2012. – Т. 109. – №. 14. – С. 5376-5381. https://doi.org/10.1073/pnas.1112211109
3. Breaker R. R. Riboswitches and translation control //Cold Spring Harbor perspectives in biology. – 2018. – Т. 10. – №. 11. – С. a032797. https://doi.org/10.1101/cshperspect.a032797
4. Dvinge H. et al. RNA components of the spliceosome regulate tissue-and cancer-specific alternative splicing //Genome research. – 2019. – Т. 29. – №. 10. – С. 1591-1604. https://doi.org/10.1101/gr.246678.118
5. Kiss T. Small nucleolar RNA‐guided post‐transcriptional modification of cellular RNAs //The EMBO journal. – 2001. – Т. 20. – №. 14. – С. 3617-3622. https://doi.org/10.1093/emboj/20.14.3617
6. Aravin A. A. et al. Developmentally regulated piRNA clusters implicate MILI in transposon control //Science. – 2007. – Т. 316. – №. 5825. – С. 744-747. http://doi.org/10.1126/science.1142612
7. Yang G., Lu X., Yuan L. LncRNA: a link between RNA and cancer //Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. – 2014. – Т. 1839. – №. 11. – С. 1097-1109. https://doi.org/10.1016/j.bbagrm.2014.08.012
8. Montange R. K., Batey R. T. Riboswitches: emerging themes in RNA structure and function //Annu. Rev. Biophys. – 2008. – Т. 37. – С. 117-133. https://doi.org/10.1146/annurev.biophys.37.032807.130000
9. Strobel E. J., Angela M. Y., Lucks J. B. High-throughput determination of RNA structures //Nature Reviews Genetics. – 2018. – Т. 19. – №. 10. – С. 615-634. https://doi.org/10.1038/s41576-018-0034-x
10. Miao Z. et al. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme //Rna. – 2017. – Т. 23. – №. 5. – С. 655-672. https://doi.org/10.1261/rna.060368.116
11. Wang J. et al. Limits in accuracy and a strategy of RNA structure prediction using experimental information //Nucleic acids research. – 2019. – Т. 47. – №. 11. – С. 5563-5572. https://doi.org/10.1093/nar/gkz427
12. Saenger W. Principles of nucleic acid structure. – Springer Science & Business Media, 2013. https://doi.org/10.1007/978-1-4612-5190-3
13. Leontis N. B., Westhof E. Geometric nomenclature and classification of RNA base pairs //Rna. – 2001. – Т. 7. – №. 4. – С. 499-512. https://doi.org/10.1017/S1355838201002515
14. Sweeney B. A., Roy P., Leontis N. B. An introduction to recurrent nucleotide interactions in RNA //Wiley Interdisciplinary Reviews: RNA. – 2015. – Т. 6. – №. 1. – С. 17-45. https://doi.org/10.1002/wrna.1258
15. Baulin E. et al. URS DataBase: universe of RNA structures and their motifs //Database. – 2016. – Т. 2016. https://doi.org/10.1093/database/baw085
16. Jian Y. et al. DIRECT: RNA contact predictions by integrating structural patterns //BMC bioinformatics. – 2019. – Т. 20. – №. 1. – С. 1-12. https://doi.org/10.1186/s12859-019-3099-4
17. Rose P. W. et al. The RCSB Protein Data Bank: redesigned web site and web services //Nucleic acids research. – 2010. – Т. 39. – №. suppl_1. – С. D392-D401. https://doi.org/10.1093/nar/gkq1021
18. Leontis N. B., Zirbel C. L. Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking //RNA 3D structure analysis and prediction. – Springer, Berlin, Heidelberg, 2012. – С. 281-298. https://doi.org/10.1007/978-3-642-25740-7_13
19. Lu X. J., Bussemaker H. J., Olson W. K. DSSR: an integrated software tool for dissecting the spatial structure of RNA //Nucleic acids research. – 2015. – Т. 43. – №. 21. – С. e142-e142. https://doi.org/10.1093/nar/gkv716
20. Liaw A. et al. Classification and regression by randomForest //R news. – 2002. – Т. 2. – №. 3. – С. 18-22. https://www.bibsonomy.org/bibtex/2ba2e49a65786a6ff232994289edb42f3/lukasbeckmann
21. Pedregosa F. et al. Scikit-learn: Machine learning in Python //Journal of machine learning research. – 2011. – Т. 12. – №. Oct. – С. 2825-2830. http://www.jmlr.org/papers/v12/pedregosa11a
22. Maaten L., Hinton G. Visualizing data using t-SNE //Journal of machine learning research. – 2008. – Т. 9. – №. Nov. – С. 2579-2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html
23. Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops //Science. – 1991. – Т. 253. – №. 5016. – С. 191-194. https://doi.org/10.1126/science.1712983
24. Tamura M., Holbrook S. R. Sequence and structural conservation in RNA ribose zippers //Journal of molecular biology. – 2002. – Т. 320. – №. 3. – С. 455-474. https://doi.org/10.1016/S0022-2836(02)00515-6
25. Nissen P. et al. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif //Proceedings of the National Academy of Sciences. – 2001. – Т. 98. – №. 9. – С. 4899-4903. https://doi.org/10.1073/pnas.081082398