APPLICATIONS OF SOME NEW TRANSMUTED CUMULATIVE DISTRIBUTION FUNCTIONS IN POPULATION DYNAMICS

Main Article Content

Vesselin Kyurkchiev
Anton Iliev Iliev
Nikolay Kyurkchiev

Abstract

Motivation: In literature, several transformations exists to obtain a new cumulative distribution function (cdf) using other(s) well-known cdf(s).


Results: In this note we find applications of some new cumulative distribution function transformations to construct a family of sigmoidal functions based on the Verhulst logistic function.


We prove estimates for the Hausdorff approximation of the shifted Heaviside step function by means of this family. Numerical examples, illustrating our results are given.

Article Details

How to Cite
KYURKCHIEV, Vesselin; ILIEV, Anton Iliev; KYURKCHIEV, Nikolay. APPLICATIONS OF SOME NEW TRANSMUTED CUMULATIVE DISTRIBUTION FUNCTIONS IN POPULATION DYNAMICS. Journal of Bioinformatics and Genomics, [S.l.], n. 1 (3), may 2017. ISSN 2530-1381. Available at: <http://journal-biogen.org/article/view/51>. Date accessed: 22 apr. 2018. doi: http://dx.doi.org/10.18454/jbg.2017.1.3.2.
Section
Research in Biology using computation
References
Anguelov, R. & Markov, S. (2016). Hausdorff Continuous Interval Functions and Approximations, In: M. Nehmeier et al. (Eds), Scientific Computing, Computer Arithmetic, and Validated Numerics, 16th International Symposium, SCAN 2014, LNCS 9553, 3-13, Springer. doi:10.1007/978-3-319-31769-4
Aryal, G. R. (2013). Transmuted log-logistic distribution. Journal of Statistics Applications and Probability, 2 (1), 11-20.
Aryal, G. R. & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application, Nonlinear Analy-sis: Theory, Methods and Applications, 71 (12), 1401-1407.
Costarelli, D. & Spigler, R. (2013). Constructive Approx-imation by Superposition of Sigmoidal Functions. Analysis in Theory and Applications, 29 (2), 169-196. doi:10.4208/ata.2013.v29.n2.8
Gupta, R. G., Gupta, P. L. & Gupta, R. D. (1998). Model-ing failure time data by Lehman alternatives. Communications in Statistics, Theory and Methods, 27, 887-904.
Hausdorff, F. (2005). Set Theory (2 ed.), Chelsea Publish-ing, New York, Republished by AMS-Chelsea.
Iliev, A., Kyurkchiev, N. & Markov, S. (2017a). On the Approximation of the step function by some sigmoid func-tions. Mathematics and Computers in Simulation, 133, 223-234. doi:10.1016/j.matcom.2015.11.005
Iliev, A., Kyurkchiev, N. & Markov, S. (2017b). A family of recurrence generated parametric activation functions with applications to neural networks. International Journal on Research Innovations in Engineering Science and Technology (IJRIEST), 2 (1), 60-68.
Khan, M. & King, R. (2013). Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution. European Journal of Pure and Applied Mathematics, 6 (1), 66-88.
Kumar, D., Singh, U. & Singh, S. (2015a). A method of proposing new distribution and its application to Bladder cancer patients data. Journal of Statistics Applications & Probability Letters, 2 (3), 235-245.
Kumar, D., Singh, U. & Singh, S. (2015b). A new distribu-tion using sine function and its application to Bladder cancer patients data. Journal of Statistics Applications & Probability, 4 (3), 417-427.
Kumar, D., Singh, U. & Singh, S. (2017). Lifetime distri-bution: derived from some minimum guarantee distribution. Sohag Journal of Mathematics, 4 (1), 7-11.
Kyurkchiev, N. (2015). On the Approximation of the step function by some cumulative distribution functions. Comptes rendus de l’Académie bulgare des Sciences, 68 (12), 1475-1482.
Kyurkchiev, N. (2016a). Mathematical Concepts in Insur-ance and Reinsurance. Some Moduli in Programming Envi-ronment MATHEMATICA. LAP LAMBERT Academic Pub-lishing, Saarbrucken, 136 pp.
Kyurkchiev, N. (2016b). A family of recurrence generated sigmoidal functions based on the Verhulst logistic function. Some approximation and modelling aspects. Biomath Com-munications, 3 (2), 18 pp. doi:10.11145/bmc.2016.12.171
Kyurkchiev, N. & Iliev, A. (2016). On the Hausdorff dis-tance between the shifted Heaviside function and some gener-ic growth functions. International Journal of Engineering Works, 3 (10), 73-77.
Kyurkchiev, N. & Markov S. (2016b). On the Hausdorff distance between the Heaviside step function and Verhulst logistic function. Journal of Mathematical Chemistry, 54 (1), 109-119. doi:10.1007/S10910-015-0552-0
Kyurkchiev, N. & Markov, S. (2014). Sigmoidal functions: some computational and modelling aspects. Biomath Commu-nications, 1 (2), 30-48. doi:10.11145/j.bmc.2015.03.081
Kyurkchiev, N. & Markov, S. (2015). Sigmoid Functions: Some Approximation and Modelling Aspects. Some Moduli in Programming Environment Mathematica. LAP LAMBERT Academic Publishing, Saarbrucken.
Kyurkchiev, N. & Markov, S. (2016a). On the numerical solution of the general kinetic K-angle reaction system. Jour-nal of Mathematical Chemistry, 54 (3), 792-805. doi:10.1007/s10910-016-0592-0
Kyurkchiev, N. & Markov, S. (2016c). Hausdorff approx-imation of the sign function by a class of parametric activa-tion functions. Biomath Communications, 3 (2), 11 pp.
Kyurkchiev, V. & Kyurkchiev N. (2017). A family of re-currence generated functions based on the ”half-hyperbolic tangent activation function”. Biomedical Statistics and Infor-matics, 2 (3). doi:10.11648/j.bsi.20170203.12
Kyurkchiev, V. & Kyurkchiev, N. (2015). On the Approx-imation of the Step function by Raised-Cosine and Laplace Cumulative Distribution Functions. European International Journal of Science and Technology, 4 (9), 75–84.
Lente, G. (2015). Deterministic Kinetics in Chemistry and Systems Biology. Springer, New York.
Sendov, B. (1990). Hausdorff Approximations. Kluwer, Boston. doi:10.1007/978-94-009-0673-0