BIOINFORMATICS MODEL OF THE CARAPACE SCUTE PATTERN OF THE RED-EARED SLIDER TRACHEMYS SCRIPTA ELEGANS (WIED-NEUWIED, 1839)

Main Article Content

Andrey Kiladze

Abstract

The scutes located on the carapace of the red-eared slider Trachemys scripta elegans (Wied-Neuwied, 1839) have been modeled. Bioinformatics modeling of carapace’s scutes were carried out by utilizing the Voronoi decomposition and Delaunay triangulation method. These two geometric techniques allow the patterns of vertebral and costal scutes to be recreated. The proposed model may have a certain value for taxonomy as well as for estimating the symmetry of the morphological structures, which is important for the purposes of biomimetics.

Article Details

How to Cite
KILADZE, Andrey. BIOINFORMATICS MODEL OF THE CARAPACE SCUTE PATTERN OF THE RED-EARED SLIDER TRACHEMYS SCRIPTA ELEGANS (WIED-NEUWIED, 1839). Journal of Bioinformatics and Genomics, [S.l.], n. 3 (5), oct. 2017. ISSN 2530-1381. Available at: <http://journal-biogen.org/article/view/65>. Date accessed: 13 dec. 2017. doi: http://dx.doi.org/10.18454/jbg.2017.3.5.2.
Section
Structural bioinformatics
References
Belintsev, B. N. (1991). Fizicheskie osnovy biologicheskogo formoobfazovaniya [Physical Foundation of Biological Morphogenesis]. Moscow, USSR: Nauka, Gl. Red. Fiz-Mat. Lit.
Casale P., Freggi D., Rigoli A., Ciccocioppo A., Luschi P. (2017). Geometric morphometrics, scute patterns and biome-trics of loggerhead turtles (Caretta caretta) in the central Mediterranean. Amphibia-Reptilia, 38 (2). P. 145–156. doi: 10.1163/15685381-00003096
Cherepanov, G. O. (2014). Patterns of scute development in turtle shell: Symmetry and asymmetry. Paleontological Journal, 48. P. 1275−1283. doi: 10.1134/S0031030114120028
Chernova, O. F., Kiladze, A. B. (2014). Symmetry in to-pography and microstructure of vertebrate skin derivatives. Paleontological Journal, 48. P. 1284−1294. doi: 10.1134/S003103011412003X
Cordero, G. A. (2017). The turtle’s shell. Current Biology, 27 (5). R168−R169. doi:10.1016/j.cub.2016.12.040
Feldman, C. R., Parham, J. F. (2002). Molecular Phyloge-netics of Emydine Turtles: Taxonomic Revision and the Evo-lution of Shell Kinesis. Molecular Phylogenetics and Evolution, 22 (3). P. 388–398. doi: 10.1006/mpev.2001.1070
Gawell, E., Nowak, A. (2015). Voronoi tessellation in shaping the architectural form from flat rod structure. PhD Interdisciplinary Journal, 1. P. 47−55.
Gierer, A., Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik. 12 (1). P. 30−39.
Jabbari, E., Kim, D.-H., Lee, L. P., Ghaemmaghami, A., Khademhosseini, A., Eds. (2014). Handbook of Biomimetics and Bioinspiration Biologically-Driven Engineering of Mate-rials, Processes, Devices, and Systems (In 3 Volumes). Singa-pore: World Scientific Publishing Company.
Kiladze, A. B. (2017). Morfologicheskaya geometriya ka-rapaksa razlichnykh ehkologicheskikh form cherepakh [Mor-phological geometry of the carapace of different ecological forms of turtles]. Chernova, O. F., Ed., Moscow: Ru-Science Publishing House.
Kiladze, A. B., Chernova, O. F. (2014). Symmetry and asymmetry of configuration and structure of Vertebrate skin. Paleontological Journal. 48. P. 1295−1302. doi: 10.1134/S0031030114120053
Kuckir, I. (2017). Voronoi diagram in JavaScript. Available at: http://blog.ivank.net/voronoi-diagram-in-javascript.html. Accessed on 1 July 2017.
Moustakas-Verho, J. E., Cherepanov, G. O. (2015). The integumental appendages of the turtle shell: an evo-devo perspective. Journal of Experimental Zoology. Part B: Mole-cular and Developmental Evolution, 324 (3). P. 221−229. doi: 10.1002/jez.b.22619
Rieppel, O. (2013). The evolution of the turtle shell. In: Morphology and evolution of turtles. p. 51−62. Brinkman, D.B., Holroyd, P.A., Gardner, J.D., Eds., NY: Springer. doi: 10.1007/978-94-007-4309-0
Saxena, R. K., Saxena, S. (2008). Comparative Anatomy of Vertebrates. Kent: Anshan Limited.
Semenov, D. V. (2009). Krasnoukhaya cherepakha, Tra-chemys scripta elegans, kak invazivnaya ugroza (Reptilia; Testudines) [Slider turtle, Trachemys scripta elegans, as inva-sion threat (Reptilia; Testudines)]. Russian Journal of Biolog-ical Invasions, 1. P. 36−43.
Sukhanov, V. B. (1964). Subclass Testudinata. In: Osnovy Paleontologii. Zemnovodnye, Presmykayushchiesya i Ptitsy [Fundamentals of Paleontology. Amphibians, Reptiles, and Birds]. p. 354–438. Orlov, Yu.A., Ed., Moscow: Nauka.
Turing, A. M. (1952): The chemical basis of morphogene-sis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237 (641). P. 37−72. doi:10.1098/rstb.1952.0012
Voytekhovsky, Y. L. (2009). Geometricheskie motivy v morfologii ryb Tetraodontiformes [Geometrical motives in the Tetraodontiformes fishes morphology]. Zhurnal Obshchei Biologii, 70. P. 257–261.
Wormser, C. (2008). Generalized Voronoi Diagrams and Applications. Computer Science. Unpublished PhD thesis. Universit´e Nice Sophia Antipolis, Nice, France.
Zangerl, R. (1969). The turtle shell. In: Biology of the Reptilia. Vol. 1 (Morphology A). p. 311–339. Gans, C., Ed., London: Academic Press.