A LOGICAL AND ONTOLOGICAL FRAMEWORK FOR KNOWLEDGE DISCOVERY ON GENE REGULATORY NETWORKS. CASE STUDY: BILE ACID AND XENOBIOTIC SYSTEM (BAXS)

Main Article Content

José López
Yascon Ramírez
Jacinto Dávila
Marcos Bastidas

Abstract

This work aims to develop a novel computational framework for automatic or semi-automatic modeling of gene regulatory networks, in which possible connections between genetic structural knowledge and other forms of knowledge available about GRNs can be explored. To perform the modeling of such networks, we consult computing services available through portals on the Internet. Some of these portals are: GeneOntology, PDB, HGNC, PathwayCommons, UniProt, PubMed, Mesh, among others. The mentioned sites provide services that make possible automatic access and can, therefore, be used to organize knowledge bases that integrate their resources. Our team has developed a prototype system that allows such an integration and the analysis of information so obtained in different modalities. In our case, the knowledge automatically gathered and modeled, expresses the identity of the objects on a network and their interactions, as well as their biological functions, biological processes and cellular components. In this sense, our proposal aims at the semantic modeling of GRNs by layers, each layer representing a standard level of description. It starts with a basic level for the model of the transcription regulatory region and goes up to a level for extra-cellular objects. Our platform consolidates all the information obtained from the different sources mentioned into one integrated representation. This representation can then be used for the discovery of biological signaling pathways and the discovery of regulatory sub-networks. At the moment, we are running processes to model and analyze the Bile Acid and Xenobiotic System (BAXS), and some results are already available. For instance, given a set of ligands, a couple of proteins and their related DNA sequences, it is possible: a) to discover a GRN describing how the given proteins regulate each other; and b) to produce sets of user-validated pathways for the proteins under consideration. Details about our system, named biopatternsg (biopatterns searching), can be viewed at:  https://github.com/biopatternsg/biopatternsg.

Metrics

Metrics Loading ...

Article Details

How to Cite
López, J., Ramírez, Y., Dávila, J., & Bastidas, M. (2021). A LOGICAL AND ONTOLOGICAL FRAMEWORK FOR KNOWLEDGE DISCOVERY ON GENE REGULATORY NETWORKS. CASE STUDY: BILE ACID AND XENOBIOTIC SYSTEM (BAXS). JOURNAL OF BIOINFORMATICS AND GENOMICS, (2 (14). https://doi.org/10.18454/jbg.2020.2.14.1 (Original work published December 14, 2020)
Section
Novel computational tools and databases

References

Rodchenkov I. Pathway Commons 2019 Update: integration, analysis and exploration of pathway data / Rodchenkov I. et al. //Nucleic Acids Res. -2020. -Vol. 48. -No. issue_D1. -P. D489-D497. -URL:https://doi.org/10.1093/nar/gkz946

Croft D. Reactome: a database of reactions, pathways and biological processes / Croft D. et al. //Nucleic Acids Res. -2011. -Vol. 39. -No issue_1. -P. D691-D697. -URL:https://doi.org/10.1093/nar/gkq1018

Sirin E. Pellet: A practical OWL-DL reasoner / Sirin E. et al. //Journal of Web Semantics. -2007. -Vol. -No. issue_2. -P. 51-53. -URL:https://doi.org/10.1016/j.websem.2007.03.004

Munoz-Torres M. Get GO! Retrieving GO Data Using AmiGO, QuickGO, API, Files, and Tools / Munoz-Torres M., Carbon S. //Methods Mol Biol. -2017. -Vol. 1446. -P.149-160. -URL:https://doi.org/10.1007/978-1-4939-3743-1_11

Khamparia A. Comprehensive analysis of semantic web reasoners and tools: a survey / Khamparia, A., Pandey, B. //Educ Inf Technol. -2017. -Vol. 22. -P. 3121–3145. -URL:https://doi.org/10.1007/s10639-017-9574-5

Dickerson J.A. Creating Metabolic Network Models using Text Mining and Expert Knowledge / Dickerson J.A. et al. //Computational Biology and Genome Informatics.: Edited by World Scientific Publishing. -2003. -P. 268. -URL:https://doi.org/10.1142/5183

Chen H. Content-rich biological network constructed by mining PubMed abstracts / Chen H., Sharp B.M. //BMC Bioinformatics. -2004. -Vol. 5. -No. 147. -URL:https://doi.org/10.1186/1471-2105-5-147

Li S. Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach / Li S., Wu L., Zhang Z. //Bioinformatics. -2006. -Vol. 22. -No issue_17. -P. 2143-2150. -URL:https://doi.org/10.1093/bioinformatics/btl363

Gevaert O. A framework for elucidating regulatory networks based on prior information and expression data / Gevaert O., Van Vooren S., De Moor B. //Ann N Y Acad Sci. -2007. -Vol. 1115. -No issue_1. -P. 240-248. -URL:https://doi.org/10.1196/annals.1407.002

Steele E. Literature-based priors for gene regulatory networks / Steele E. et al. //Bioinformatics. -2009. -Vol. 25. -No. 14. P. 1768-1774. -URL:https://doi.org/10.1093/bioinformatics/btp277

Zhu F. Biomedical text mining and its applications in cancer research / Zhu F. et al. //J Biomed Inform. -2013. -Vol. 46. -No. issue_2. -P. 200-211. -URL:https://doi.org/10.1016/j.jbi.2012.10.007

Žitnik S. Sieve-based relation extraction of gene regulatory networks from biological literature / Žitnik S. //BMC Bioinformatics. -2015. -Vol. 16. -No. suppl_16. -P. S1. DOI: -URL:https://doi.org/10.1186/1471-2105-16-S16-S1

Bouaziz J. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database / Bouaziz J. et al //Biomed Res Int. -2018. -No. 6217812. -URL:https://doi.org/10.1155/2018/6217812

Baral C. A knowledge based approach for representing and reasoning about signaling networks / Baral C. et al. //Bioinformatics. -2004. -Vol. 20. -No. suppl_1. -P. i15-i22. -URL:https://doi.org/10.1093/bioinformatics/bth918

Tran N. Knowledge-based framework for hypothesis formation in biochemical networks / Tran N. et al. //Bioinformatics. -2005. -Vol. 21 -No. suppl_2. P. ii213-ii219. -URL:https://doi.org/10.1093/bioinformatics/bti1134

Muggleton S.H. Machine Learning for Systems Biology / Muggleton S.H. //Inductive Logic Programming, Lecture Notes in Computer Science: Edited by Kramer S., Pfahringer B., Springer. -2005. -Vol. 3625. -P. 416-423. -URL:https://doi.org/10.1007/11536314_27

Tamaddoni-Nezhad A. Application of abductive ILP to learning metabolic network inhibition from temporal data / Tamaddoni-Nezhad A. et al. //Machine Learning. -2006. Vol. 64. -P. 209–230. -URL:https://doi.org/10.1007/s10994-006-8988-x

Muggleton S. Knowledge Mining Biological Network Models / Muggleton S. //6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP). -2010. -P. 2-2. -URL:https://doi.org/10.1007/978-3-642-16327-2_2

Linde J. Data- and knowledge-based modeling of gene regulatory networks: an update / Linde J. et al. //EXCLI J. -2015. -Vol. 14. -P. 346-378. -URL:https://doi.org/10.17179/excli2015-168

Rougny A. A logic-based method to build signaling networks and propose experimental plans / Rougny A. et al.. //Sci Rep. -2018. -Vol. 8. -No. 7830. -URL:https://doi.org/10.1038/s41598-018-26006-2

Kitano H. Using process diagrams for the graphical representation of biological networks / Kitano H. et al. //Nat Biotechnol. -2005. -Vol. 23. -No. 8. -P. 961-966. -URL:https://doi.org/10.1038/nbt1111

Kitano H. Accelerating systems biology research and its real world deployment. //NPJ Syst Biol Appl. -2015. -Vol. 1. -No. 15009. -URL:https://doi.org/10.1038/npjsba.2015.9

Kitano H. Artificial Intelligence to Win the Nobel Prize and Beyond: Creating the Engine for Scientific Discovery / Kitano H. //AI Mag. -2016. -Vol. 37. -No. 1. -P. 39-49. -URL:https://doi.org/10.1609/aimag.v37i1.2642

Hsin K.Y. systemsDock: a web server for network pharmacology-based prediction and analysis / Hsin K.Y. et al. //Nucleic Acids Res. -2016. -Vol. 44. -No issue_W1. -P W507-W513. -URL:https://doi.org/10.1093/nar/gkw335

Emmert-Streib F., Dehmer M.,, Haibe-Kains B. Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks / Emmert-Streib F., Dehmer M.,, Haibe-Kains B. //Front Cell Dev Biol. -2014. -Vol. 2. -No. 38. -URL:https://doi.org/10.3389/fcell.2014.00038

Demir E. The BioPAX community standard for pathway data sharing / Demir E. et al. //Nat Biotechnol. -2010. -Vol. 28. -No 9. P. 935–942. -URL: https://doi.org/10.1038/nbt.1666

Musen M.A. The Protégé Project: A Look Back and a Look Forward / Musen M.A et al. //AI Matters. -2015. -Vol. 1. -No. 4.. -URL:https://doi.org/10.1145/2757001.2757003

Fiorini N. Towards PubMed 2.0 / Fiorini N., Lipman D. J., Lu Z. //eLife. -2017. -Vol. 6. -No e28801. -URL:https://doi.org/10.7554/eLife.28801

Rose P.W. The RCSB protein data bank: integrative view of protein, gene and 3D structural information / Rose P.W. et al. //Nucleic Acids Res. -2017. -Vol. 45. -No. issue_D1. -P. D271-D281. -URL:https://doi.org/10.1093/nar/gkw1000

Berman H. M. The Protein Data Bank archive as an open data resource / Berman H. M. et al //J Comput Aided Mol Des. -2014. -Vol. 28. -No. 10. -P. 1009-1014. URL:https://doi.org/10.1007/s10822-014-9770-y

Gray K.A. A review of the new HGNC gene family resource / Gray K.A. et al. //Hum Genomics. -2016. -Vol. 10. -No. 6. -URL:https://doi.org/10.1186/s40246-016-0062-6

Thomas P.D. The Gene Ontology and the Meaning of Biological Function / Thomas P.D. //Methods Mol Biol. -2017. -Vol. 1446. -P. 15-24. -URL:https://doi.org/10.1007/978-1-4939-3743-1_2

Pundir S. UniProt Protein Knowledgebase / Pundir S, Martin MJ, O'Donovan C. //Methods Mol Biol. -2017. Vol. 1558. P. 41-55. -URL:https://doi.org/10.1007/978-1-4939-6783-4_2

Baumann N. How to use the medical subject headings (MeSH) / Baumann N. //Int J Clin Pract. -2016. -Vol. 70. -No. issue_2. -P. 171-174. -URL:https://doi.org/10.1111/ijcp.12767

Bhalla U. S. Understanding complex signaling networks through models and metaphors / Bhalla U. S. //Prog Biophys Mol Biol. -2003. -Vol. 81. -No. issue_1. -P. 45-65. -URL:https://doi.org/10.1016/s0079-6107(02)00046-9

Shao Li, Lijiang Wu, Zhongqi Zhang (2006). Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach/ Shao Li, Lijiang Wu, Zhongqi Zhang. //Bioinformatics. -2006. -Vol. 22. No issue_17. -P. 2143–2150, https://doi.org/10.1093/bioinformatics/btl363

Li X. Global mapping of gene/protein interactions in PubMed abstracts: a framework and an experiment with P53 interactions / Li X. et al. //J Biomed Inform. -2007. -Vol. 40. -No issue_5. -P. 453-464. -URL:https://doi.org/10.1016/j.jbi.2007.01.001

Cho K.H. Reverse engineering of gene regulatory networks / Cho K.H. et al. //IET Syst Biol. -2007. -Vol. 1. -No 3. -P. 149-163. -URL:https://doi.org/10.1049/iet-syb:20060075

Camacho D. Comparison of reverse-engineering methods using an in silico network / Camacho D. et al. //Ann N Y Acad Sci. -2007. -Vol. 1115. -No. issue_1. -P. 73-89. URL:https://doi.org/10.1196/annals.1407.006

Karlebach G. Modelling and analysis of gene regulatory networks / Karlebach G., Shamir R. //Nat Rev Mol Cell Biol. -2008. -Vol. 9. -No 10. -P. 770-780. -URL:https://doi.org/10.1038/nrm2503

Viswanathan G.A. Getting started in biological pathway construction and analysis / Viswanathan G.A. et al. //PLoS computational biology. -2008. -Vol. 4. -No. 2. -P. e16. -URL:https://doi.org/10.1371/journal.pcbi.0040016

Janky R. iRegulon: from a gene list to a gene regulatory network using large motif and track collections / Janky R. et al. //PLoS Comput Biol. -2014. -Vol. 10. No. 7. -URL:https://doi.org/10.1371/journal.pcbi.1003731

Cussat-Blanc S. Artificial Gene Regulatory Networks-A Review / Cussat-Blanc S., Harrington K., Banzhaf W. //Artif Life. -2018. -Vol. 24. -No issue_4. -P. 296-328. -URL:https://doi.org/10.1162/artl_a_00267

Dávila J. Una gramática de estilos para resumir textos en español [A grammar of style to summarize Spanish texts] / Dávila J., Contreras H. //Revista de La Sociedad Español para el Procesamiento del Lenguaje Natural (SEPLN). -2002. -Vol. 29. -P. 265-273. -URL:http://www.saber.ula.ve/handle/123456789/15963 [in Spanish]

Parra M.M. Un Modelo Computacional para la Generación de Resúmenes Automáticos de Artículos Científicos en Español [A computational model for the generation of automatic, Spanish, scientific abstracts] / Parra M.M., Dávila J. //ACTAS del IX Simposio Internacional de Comunicación Social. -2005. -P. 213-216. -URL:https://www.researchgate.net/publication/44476598 [in Spanish]

Lu TT. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors / Lu TT. et al. //Mol Cell. -2000. -Vol. 6. -No 3. -P. 507-515. -URL:https://doi.org/10.1016/s1097-2765(00)00050-2

Schmidt O. (2009). A standard-compliant global map of the bile acid/xenobiotic signalling network: Construction and automated query processing / Schmidt O. et al. //Proceedings of The 2009 International Conference on Bioinformatics and Computational Biology (BIOCOMP'2009). -2009. -Vol. II. -P. 657-663. -URL:https://www.researchgate.net/publication/344755794

Lee J. Processing SPARQL queries with regular expressions in RDF databases / Lee J. et al. //BMC Bioinformatics. -2011. -Vol. 12. -No suppl_2. -P. S6. -URL:https://doi.org/10.1186/1471-2105-12-S2-S6

Ladunga I. Finding homologs to nucleotide sequences using network BLAST searches / Ladunga I. //Curr Protoc Bioinformatics. -2002. ; -Vol 00. -No. issue_1. -P. 3.3.1-3.3.25. -URL:https://doi.org/10.1002/0471250953.bi0303s00

Tsunoda T., Takagi T. Estimating transcription factor bindability on DNA / Tsunoda T., Takagi T. //Bioinformatics. -1999. -Vol. 15. -No. issue_7. -P. 622-630. -URL:https://doi.org/10.1093/bioinformatics/15.7.622

Wielemaker J. SWI-prolog / Wielemaker, J. et al. //Theory and Practice of Logic Programming. -2012. -Vol. 12. -No 1-2. -P. 67–96. -URL:https://doi.org/10.1017/S1471068411000494