BIOINFORMATICS MODEL OF THE CARAPACE SCUTE PATTERN OF THE RED-EARED SLIDER TRACHEMYS SCRIPTA ELEGANS (WIED-NEUWIED, 1839)

Main Article Content

Andrei Kiladze

Abstract

The scutes located on the carapace of the red-eared slider Trachemys scripta elegans (Wied-Neuwied, 1839) have been modeled. Bioinformatics modeling of carapace’s scutes were carried out by utilizing the Voronoi decomposition and Delaunay triangulation method. These two geometric techniques allow the patterns of vertebral and costal scutes to be recreated. The proposed model may have a certain value for taxonomy as well as for estimating the symmetry of the morphological structures, which is important for the purposes of biomimetics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Kiladze, A. (2017). BIOINFORMATICS MODEL OF THE CARAPACE SCUTE PATTERN OF THE RED-EARED SLIDER TRACHEMYS SCRIPTA ELEGANS (WIED-NEUWIED, 1839). JOURNAL OF BIOINFORMATICS AND GENOMICS, (3 (5). https://doi.org/10.18454/jbg.2017.3.5.2
Section
Structural bioinformatics

References

Belintsev, B. N. (1991). Fizicheskie osnovy biolog-icheskogo formoobfazovaniya [Physical Foundation of Biological Morphogenesis]. Moscow, USSR: Nauka, Gl. Red. Fiz-Mat. Lit.

Casale, P., Freggi, D., Rigoli, A., Ciccocioppo, A., Luschi, P. (2017). Geometric morphometrics, scute patterns and biometrics of loggerhead turtles (Caretta caretta) in the central Mediterranean. Amphibia-Reptilia, 38 (2). P. 145–156. doi: 10.1163/15685381-00003096

Cherepanov, G. O. (2014). Patterns of scute develop-ment in turtle shell: Symmetry and asymmetry. Paleontological Journal, 48. P. 1275−1283. doi: 10.1134/S003103011412

Chernova, O. F., Kiladze, A. B. (2014). Symmetry in to-pography and microstructure of vertebrate skin derivatives. Paleontological Journal, 48. P. 1284−1294. doi: 10.1134/S003103011412003X

Cordero, G. A. (2017). The turtle’s shell. Current Biolo-gy, 27 (5). R168−R169. doi:10.1016/j.cub.2016.12.040

Feldman, C. R., Parham, J. F. (2002). Molecular Phylo-genetics of Emydine Turtles: Taxonomic Revision and the Evolution of Shell Kinesis. Molecular Phylogenetics and Evolution, 22 (3). P. 388–398. doi: 10.1006/mpev.2001.1070

Gawell, E., Nowak, A. (2015). Voronoi tessellation in shaping the architectural form from flat rod structure. PhD Interdisciplinary Journal, 1. P. 47−55.

Gierer, A., Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik. 12 (1). P. 30−39.

Jabbari, E., Kim, D.-H., Lee, L. P., Ghaemmaghami, A., Khademhosseini, A., Eds. (2014). Handbook of Biomimet-ics and Bioinspiration Biologically-Driven Engineering of Materials, Processes, Devices, and Systems (In 3 Volumes). Singapore: World Scientific Publishing Company.

Kiladze, A. B. (2017). Morfologicheskaya geometriya karapaksa razlichnykh ehkologicheskikh form cherepakh [Morphological geometry of the carapace of different eco-logical forms of turtles]. Chernova, O. F., Ed., Moscow: Ru-Science Publishing House.

Kiladze, A. B., Chernova, O. F. (2014). Symmetry and asymmetry of configuration and structure of Vertebrate skin. Paleontological Journal. 48. P. 1295−1302. doi: 10.1134/S0031030114120053

Kuckir, I. (2017). Voronoi diagram in JavaScript. Avail-able at: http://blog.ivank.net/voronoi-diagram-in-javascript.html. Accessed on 1 July 2017.

Moustakas-Verho, J. E., Cherepanov, G. O. (2015). The integumental appendages of the turtle shell: an evo-devo perspective. Journal of Experimental Zoology. Part B: Mo-lecular and Developmental Evolution, 324 (3). P. 221−229. doi: 10.1002/jez.b.22619

Rieppel, O. (2013). The evolution of the turtle shell. In: Morphology and evolution of turtles. p. 51−62. Brinkman, D.B., Holroyd, P.A., Gardner, J.D., Eds., NY: Springer. doi: 10.1007/978-94-007-4309-0

Saxena, R. K., Saxena, S. (2008). Comparative Anatomy of Vertebrates. Kent: Anshan Limited.

Semenov, D. V. (2009). Krasnoukhaya cherepakha, Trachemys scripta elegans, kak invazivnaya ugroza (Reptil-ia; Testudines) [Slider turtle, Trachemys scripta elegans, as invasion threat (Reptilia; Testudines)]. Russian Journal of Biological Invasions, 1. P. 36−43.

Sukhanov, V. B. (1964). Subclass Testudinata. In: Os-novy Paleontologii. Zemnovodnye, Presmykayushchiesya i Ptitsy [Fundamentals of Paleontology. Amphibians, Rep-tiles, and Birds]. p. 354–438. Orlov, Yu.A., Ed., Moscow: Nauka.

Turing, A. M. (1952). The chemical basis of morpho-genesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237 (641). P. 37−72. doi:10.1098/rstb.1952.0012

Voytekhovsky, Y. L. (2009). Geometricheskie motivy v morfologii ryb Tetraodontiformes [Geometrical motives in the Tetraodontiformes fishes morphology]. Zhurnal Ob-shchei Biologii, 70. P. 257–261.

Wormser, C. (2008). Generalized Voronoi Diagrams and Applications. Computer Science. Unpublished PhD thesis. Universit´e Nice Sophia Antipolis, Nice, France.

Zangerl, R. (1969). The turtle shell. In: Biology of the Reptilia. Vol. 1 (Morphology A). p. 311–339. Gans, C., Ed., London: Academic Press.