EVALUATION OF STRUCTURAL HOMOLOGY BETWEEN FUNCTIONALLY SIMILAR PROTEINS OF HIGHLY SPECIALIZED TISSUES ON THE EXAMPLE OF PROTEOGLYCANS AND SURFACTANT PROTEINS

Main Article Content

P.A. Krylov
A.V. Tretyakova
E.O. Gerasimova
E.I. Fetisova
V.V. Novochadov

Abstract

Proteins synthesized by cells of various tissues may have common functions, but at the same time have a heterologous structure. Previously, it was experimentally confirmed that lung suffractant proteins can be synthesized by chondrocytes of articular cartilage. Articular cartilage proteoglycans, such as lubricin (PRG4) and aggrecan (ACAN), have partially similar functions to surfactant proteins (SP-A, SP-B, SP-C, and SP-D). The main goal of the work was to evaluate of structural homology between these proteins. The Ugene program was the source of the of multiple and paired alignment results using the ClustalW and Smith–Waterman algorithm, and the MEGA11 program provided phylogenetic analysis. A common domain of the Lectin C-type family with a high degree of similarity to the domains of EGF-like proteoglycans (ACAN) and SMB 1 (PRG4) was found in ALAN, SP and SP-D proteins. The Sasposin domains of the SP-B protein had the greatest similarity with the PRG4 and ACAN domains over 57%. The BRICHOS domain of the SP-C protein had similarities with the SMB1, SMB2 (PRG4) and EGF-like (ACAN) domains. The mucin domain in the PRG4 structure was not detected. The phylogenetic analysis revealed about stidied proteins to have low level of evolution homology, as evidenced by bootstrap support.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Krylov, P., Tretyakova , A., Gerasimova , E., Fetisova , E., & Novochadov , V. (2023). EVALUATION OF STRUCTURAL HOMOLOGY BETWEEN FUNCTIONALLY SIMILAR PROTEINS OF HIGHLY SPECIALIZED TISSUES ON THE EXAMPLE OF PROTEOGLYCANS AND SURFACTANT PROTEINS. JOURNAL OF BIOINFORMATICS AND GENOMICS, (1(19). https://doi.org/10.18454/jbg.2023.3.19.001
Section
Structural bioinformatics

References

Saito T. The superficial zone of articular cartilage / T. Saito // Inflamm. Regen. — 2022. — Vol. 42, No. 1. — P. 14-19. — DOI: 10.1186/s41232-022-00202-0

Singh J. Surfactant protein disorders in childhood interstitial lung disease / J. Singh, A. Jaffe, A. Schultz [et al.] // Eur. J. Pediatr. — 2021. — Vol. 180, No 9. — P. 2711-2721. —DOI: 10.1007/s00431-021-04066-3

Grässel S. Recent advances in the treatment of osteoarthritis / S. Grässel, D. Muschter // F1000Research. — 2020. — No. 9 F1000. — P. Faculty Rev-325. — DOI: 10.12688/f1000research.22115.1

Ma L. Knee Osteoarthritis Therapy: Recent Advances in Intra-Articular Drug Delivery Systems / L. Ma, X. Zheng, R. Lin [et al.] // Drug design, development and therapy. — 2022. — Vol. 16. — P. 1311-1347. — DOI: 10.2147/DDDT.S357386

Novochadov V.V. Production technology and physicochemical properties of composition containing surfactant proteins / V.V. Novochadov, P.A. Krylov // European Journal of Molecular Biotechnology. — 2016. — No. 2(12). — P. 77-84. — DOI: 10.13187/ejmb.2016.12.77

Krylov P.A. Evaluation of the efficiency of lubricant based on pulmonary surfactant in experimental knee osteoarthritis in rats: analysis of 3D reconstructions / P.A. Krylov, A.S. Astakhov, E.N. Nesmeyanova [et al.] // Bulletin of Experimental Biology and Medicine. — 2020. — Vol. 168. — No. 3. — P. 371-374. — DOI: 10.1007/s10517-020-04711-1

Wu Y. Oxytocin prevents cartilage matrix destruction via regulating matrix metalloproteinases / Y. Wu, T. Wu, B. Xu [et al.] // Biochem. Biophys. Res. Commun. — 2017. — Vol. 486, No 3. — P. 601-606. — DOI: 10.1016/j.bbrc.2017.02.115

Fan X. Macro, micro, and molecular. changes of the osteochondral interface in osteoarthritis development / X. Fan, X. Wu, R. Crawford [et al.] // Front Cell Dev. Biol. — 2021. — Vol. 9. — e659654. — DOI:10.3389/fcell.2021.659654

Alekseeva L.I. Preparaty zamedlennogo dejstviya v lechenii osteoartroza [Delayed-acting drugs in the treatment of osteoarthritis] // Russian Medical Journal [Russkij Medicinskij ZHurnal]. — 2012. — Vol. 16. — № 7. — P. 389–391. [in Russian]

Boer C. G. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell / C. G. Boer, K. Hatzikotoulas, L. Southam — 2021. — Vol. 184, No 18. — P. 4784-4818. — e17. — DOI: 10.1016/j.cell.2021.07.038

Floros J. Differential regulation of human surfactant protein a genes, sftpa1 and sftpa2, and their corresponding variants / J. Floros, N. Tsotakos // Front Immunol. — 2021. — Vol. 12. — e766719. — DOI: 10.3389/fimmu.2021.766719

Hartjen N. Evaluation of surfactant proteins A, B, C, and D in articular cartilage, synovial membrane and synovial fluid of healthy as well as patients with osteoarthritis and rheumatoid arthritis / N. Hartjen, L. Bräuer, B. Reiß [et al.] // PLoS One. — 2018. — Vol. 13, No. 9. — e0203502. — DOI: 10.1371/journal.pone.0203502

Seime T. Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification / T. Seime, A.C. Akbulut, M.L. Liljeqvist [et al.] // Cells. — 2021. — Vol. 10, No 6. — e1276. —DOI: 10.3390/cells10061276

Menon N.G. Proteoglycan 4 (PRG4) expression and function in dry eye associated inflammation / N.G. Menon, R. Goyal, C. Lema // Exp. Eye Res. — 2021. — Vol. 208. — e108628. — DOI: 10.1016/j.exer.2021.108628

Akkiraju H. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration / H. Akkiraju, A. Nohe // J. Dev. Biol. — 2015. — Vol. 3, No. 4. — P. 177-192. — DOI: 10.3390/jdb3040177

Guagliardo R. Nanocarrier lipid composition modulates the impact of pulmonary surfactant protein B (SP-B) on cellular delivery of siRNA / R. Guagliardo, P. Merckx, A. Zamborlin [et al.] // Pharmaceutics. — 2019. — Vol. 11, No. 9. — e431. — DOI: 10.3390/pharmaceutics11090431

Sehlmeyer K. Alveolar dynamics and beyond – the importance of surfactant protein C and cholesterol in lung homeostasis and fibrosis / K. Sehlmeyer, J. Ruwisch, N. Roldan [et al.] // Front Physiol. — 2020. — Vol. 11. — e386. — DOI: 10.3389/fphys.2020.00386

Huang S. Cathepsin g degrades both glycosylated and unglycosylated regions of lubricin, a synovial mucin / S. Huang, K.A. Thomsson, C. Jin [et al.] // Sci. Rep. — 2020. — Vol.10, No. 1 — e4215. — DOI: 10.1038/s41598-020-61161-5

Dateki S. ACAN mutations as a cause of familial short stature / S. Dateki // Clin.Pediatr. Endocrinol. — 2017. — Vol. 26, No. 3. — P. 119-125. — DOI: 10.1297/cpe.26.119

King S.D. Recent progress on surfactant protein A: cellular function in lung and kidney disease development / S.D. King, S.Y. Chen // Am. J. Physiol. Cell Physiol. — 2020. — Vol. 319, No. 2. — P. C316-C320. — DOI: 10.1152/ajpcell.00195.2020

Johansson J. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases / J. Johansson, T. Curstedt // J. Intern. Med. — 2019. — Vol. 285, No. 2. — P. 165-186. — DOI: 10.1111/joim.12845

Sun Y. Altered autophagy in the mice with a deficiency of saposin A and saposin B / Y. Sun, G.A. Grabowski // Autophagy. — 2013. — Vol. 9, No. 7. — P. 1115-1116. — DOI: 10.4161/auto.24919

Ricard-Blum S. The collagen family / S. Ricard-Blum // Cold Spring HarbPerspect Biol. — 2011. — Vol. 3, No. 1. — a004978. — DOI: 10.1101/cshperspect.a004978

Ikegami M. The collagen-like region of surfactant protein A (SP-A) is required for correction of surfactant structural and functional defects in the SP-A null mouse / M. Ikegami, B.M. Elhalwagi, N. Palaniyar [et al.] // J. Biol. Chem. — 2001. — Vol. 276, No. 42. — P. 38542-38548. — DOI: 10.1074/jbc.M102054200

Hedlund J. Persson B. BRICHOS - a superfamily of multidomain proteins with diverse functions / J. Hedlund, J. Johansson, B. Persson [et al.] // BMC Res. Notes. — 2009. — Vol. 2. — e180. — DOI: 10.1186/1756-0500-2-180

Sáenz A. Folding and intramembraneous BRICHOS binding of the prosurfactant protein C transmembrane segment / A. Sáenz, J. Presto, P. Lara [et al.] // J. Biol. Chem. — 2015. — Vol. 290, No. 28. — P. 17628-17641. — DOI: 10.1074/jbc.M114.630343

UniProtKB [website]. — URL: https://www.uniprot.org/ (accessed: 20.11.2022)

NCBI Protein [website]. — URL: https://www.ncbi.nlm.nih.gov/protein (accessed: 20.11.2022)

EMBL-EBI [website]. — URL: https://www.ebi.ac.uk (accessed: 20.11.2022)

Ensembl [website]. — URL: https://www.ensembl.org/index.html (accessed: 20.11.2022)

NCBI [website]. — URL: https://www.ncbi.nlm.nih.gov/cdd/ (accessed: 20.11.2022)