APPLICATIONS OF SOME NEW TRANSMUTED CUMULATIVE DISTRIBUTION FUNCTIONS IN POPULATION DYNAMICS

Main Article Content

Anton Iliev
Vesselin Kyurkchiev
Nikolay Kyurkchiev

Abstract

Motivation: In literature, several transformations exists to obtain a new cumulative distribution function (cdf) using other(s) well-known cdf(s).


Results: In this note we find applications of some new cumulative distribution function transformations to construct a family of sigmoidal functions based on the Verhulst logistic function.


We prove estimates for the Hausdorff approximation of the shifted Heaviside step function by means of this family. Numerical examples, illustrating our results are given.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Iliev, A., Kyurkchiev, V., & Kyurkchiev, N. (2017). APPLICATIONS OF SOME NEW TRANSMUTED CUMULATIVE DISTRIBUTION FUNCTIONS IN POPULATION DYNAMICS. JOURNAL OF BIOINFORMATICS AND GENOMICS, (1 (3). https://doi.org/10.18454/jbg.2017.1.3.2
Section
Research in Biology using computation

References

Anguelov, R. & Markov, S. (2016). Hausdorff Continu-ous Interval Functions and Approximations, In: M. Nehmeier et al. (Eds), Scientific Computing, Computer Arithmetic, and Validated Numerics, 16th International Symposium, SCAN 2014, LNCS 9553, 3-13, Springer. doi:10.1007/978-3-319-31769-4

Aryal, G. R. (2013). Transmuted log-logistic distribution. Journal of Statistics Applications and Probability, 2 (1), 11-20.

Aryal, G. R. & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application, Nonlinear Analysis: Theory, Methods and Applications, 71 (12), 1401-1407.

Costarelli, D. & Spigler, R. (2013). Constructive Ap-proximation by Superposition of Sigmoidal Functions. Analysis in Theory and Applications, 29 (2), 169-196. doi:10.4208/ata.2013.v29.n2.8

Gupta, R. G., Gupta, P. L. & Gupta, R. D. (1998). Mod-eling failure time data by Lehman alternatives. Communica-tions in Statistics, Theory and Methods, 27, 887-904.

Hausdorff, F. (2005). Set Theory (2 ed.), Chelsea Pub-lishing, New York, Republished by AMS-Chelsea.

Iliev, A., Kyurkchiev, N. & Markov, S. (2017a). On the Approximation of the step function by some sigmoid func-tions. Mathematics and Computers in Simulation, 133, 223-234. doi:10.1016/j.matcom.2015.11.005

Iliev, A., Kyurkchiev, N. & Markov, S. (2017b). A fami-ly of recurrence generated parametric activation functions with applications to neural networks. International Journal on Research Innovations in Engineering Science and Tech-nology (IJRIEST), 2 (1), 60-68.

Khan, M. & King, R. (2013). Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution. European Journal of Pure and Applied Mathematics, 6 (1), 66-88.

Kumar, D., Singh, U. & Singh, S. (2015a). A method of proposing new distribution and its application to Bladder cancer patients data. Journal of Statistics Applications & Probability Letters, 2 (3), 235-245.

Kumar, D., Singh, U. & Singh, S. (2015b). A new distri-bution using sine function and its application to Bladder cancer patients data. Journal of Statistics Applications & Probability, 4 (3), 417-427.

Kumar, D., Singh, U. & Singh, S. (2017). Lifetime dis-tribution: derived from some minimum guarantee distribu-tion. Sohag Journal of Mathematics, 4 (1), 7-11.

Kyurkchiev, N. (2015). On the Approximation of the step function by some cumulative distribution functions. Comptes rendus de l’Académie bulgare des Sciences, 68 (12), 1475-1482.

Kyurkchiev, N. (2016a). Mathematical Concepts in In-surance and Reinsurance. Some Moduli in Programming Environment MATHEMATICA. LAP LAMBERT Academic Publishing, Saarbrucken, 136 pp.

Kyurkchiev, N. (2016b). A family of recurrence gener-ated sigmoidal functions based on the Verhulst logistic function. Some approximation and modelling aspects. Biomath Communications, 3 (2), 18 pp. doi:10.11145/bmc.2016.12.171

Kyurkchiev, N. & Iliev, A. (2016). On the Hausdorff distance between the shifted Heaviside function and some generic growth functions. International Journal of Engi-neering Works, 3 (10), 73-77.

Kyurkchiev, N. & Markov S. (2016b). On the Hausdorff distance between the Heaviside step function and Verhulst logistic function. Journal of Mathematical Chemistry, 54 (1), 109-119. doi:10.1007/S10910-015-0552-0

Kyurkchiev, N. & Markov, S. (2014). Sigmoidal func-tions: some computational and modelling aspects. Biomath Communications, 1 (2), 30-48. doi:10.11145/j.bmc.2015.03.081

Kyurkchiev, N. & Markov, S. (2015). Sigmoid Func-tions: Some Approximation and Modelling Aspects. Some Moduli in Programming Environment Mathematica. LAP LAMBERT Academic Publishing, Saarbrucken.

Kyurkchiev, N. & Markov, S. (2016a). On the numerical solution of the general kinetic K-angle reaction system. Journal of Mathematical Chemistry, 54 (3), 792-805. doi:10.1007/s10910-016-0592-0

Kyurkchiev, N. & Markov, S. (2016c). Hausdorff ap-proximation of the sign function by a class of parametric activation functions. Biomath Communications, 3 (2), 11 pp.

Kyurkchiev, V. & Kyurkchiev N. (2017). A family of recurrence generated functions based on the ”half-hyperbolic tangent activation function”. Biomedical Statis-tics and Informatics, 2 (3). doi:10.11648/j.bsi.20170203.12

Kyurkchiev, V. & Kyurkchiev, N. (2015). On the Ap-proximation of the Step function by Raised-Cosine and Laplace Cumulative Distribution Functions. European International Journal of Science and Technology, 4 (9), 75–84.

Lente, G. (2015). Deterministic Kinetics in Chemistry and Systems Biology. Springer, New York.

Sendov, B. (1990). Hausdorff Approximations. Kluwer, Boston. doi:10.1007/978-94-009-0673-0