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Abstract 

Motivation: Many traditional clinical prognostic factors have been known for cancer for years, but usually provide 
poor survival prediction. Genomic information is more easily available now which offers opportunities to build more 
accurate prognostic models. The challenge is how to integrate them to improve survival prediction. The common 
approach of jointly analyzing all type of covariates directly in one single model may not improve the prediction due to 
increased model complexity and cannot be easily applied to different datasets. 
Results: We proposed a two-stage procedure to better combine different sources of information for survival prediction, 
and applied the two-stage procedure in two cancer datasets: myelodysplastic syndromes (MDS) and ovarian cancer. 
Our analysis suggests that the prediction performance of different data types are very different, and combining clinical, 
gene expression and mutation data using the two-stage procedure improves survival prediction in terms of improved 
concordance index and reduced prediction error. 
Availability: The two-stage procedure can be implemented in BhGLM package which is freely available at 
http://www.ssg.uab.edu/bhglm/. 
Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online. 
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1. Introduction 

In the past decade, genomics has had an exceptionally 

powerful enabling role in biomedical advances. It is now 

well recognized that cancer is fundamentally disease of 

genome. A short-term goal of Precision Medicine Initiative 

is to expand cancer genomics to develop better treatment and 

prevention methods (Chaung-Stein, 2006).In order to realize 

this goal, we need accurate prognostic models to better 

predict mortality and recurrence risks. Many traditional 

clinical prognostic and predictive factors have been known 

for cancer for years, however,  they usually provide poor 

prognosis and prediction (Barrilot et al., 2012). Therefore 

there is need for new prognostic and predictive factors with 

better reproducibility and discriminatory power. Recent 

advance in genome technologies has made data profiled on 

multiple layers of genomic activities more easily available, 

which offers extraordinary opportunities to search for new 

biomarkers and build accurate prognostic and predictive 

models.  

It has been indicated in several studies that collectively 

analyzing different types of genomic measurements can be 

more informative compared to analysis of a single type of 

genomic measurement (Yuan et al., 2014; Gerstung et al., 

2015). However, with a high degree of interdependency 

among clinical and genomic variables, the challenge is how 

to integrate different types of variables and derive the best 

combination of predictors to improve the prediction of 

survival outcomes. The common approach is jointly 

analyzing all the information in a single Cox model using the 

methods for high dimension data, e.g., lasso or ridge. 

However, the models including all clinical and different 

types of genomic measurements can result in different 

coefficient estimates compared to models with only one type 

of predictors, due to the correlation between these types of 
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variables. Therefore, the predictive values of clinical and 

genomic variables cannot be easily interpreted, and cannot 

easily be applied to other datasets (van Houwelingen and 

Putter, 2011). Furthermore, the models simply fitting all 

clinical and genomic variables may not improve the 

prediction accuracy, because of the increased model 

complexity (Bøvelstad et al., 2009). 

In this paper, we proposed a more efficient and easily 

implemented two-stage procedure to integrate different types 

of variables, including clinical variables, gene expression 

and mutation. We demonstrate the advantage of the two-

stage procedure in two public datasets, Myelodysplastic 

syndromes (MDS) (Gerstung et al., 2015) and ovarian cancer 

(Cancer genome atlas research, 2011), using penalized Cox 

regressions, namely ridge, lasso and elastic net, and Bayesian 

hierarchical Cox model. Our goal is to build more accurate 

prognostic models for MDS and ovarian cancer using the 

two-stage approach, and to compare the overall prediction 

performance of clinical model, expression model, mutation 

model and integrative models (clinical+expression, 

clinical+expression+mutation). 

MDS are a heterogeneous group of clonal hematopoietic 

stem cell malignancies and are characterized by ineffective 

haematopoiesis in the bone marrow (Corey et al., 2007). The 

incidence of MDS increases with age and about one third of 

patients with MDS will develop acute myeloid leukaemia 

(AML). Patients with MDS usually have poor prognosis. In 

clinical practice, the International Prognostics Scoring 

System (IPSS) is commonly used to determine the outcome 

of MDS patients, but its prediction power is not satisfactory 

(concordance index = 0.64). Here we are interested in 

assessing whether there are additional, independent 

prognostic information contained in expression and 

mutation. In Gerstunget. al. (2015), the prediction power of 

gene expression and mutation were evaluated, but expression 

was analyzed using principle component methods (Gerstung 

et al., 2015). Even though principle component analysis is a 

popular high-dimension reduction method and has the 

advantage on data compression, it falls short when it comes 

to determine the true predictors and its results are highly data 

dependent. Therefore its utility towards precision medicine 

is limited. 

Ovarian cancer is the leading cause of death from 

gynecologic malignancies in the western world. For all types 

of ovarian cancer, the 5-year survival rate is 45%, but for 

different types, it is quite heterogeneous (Riester et al., 

2014). The low survival rate in ovarian cancer is because of 

1) most ovarian cancer patients are diagnosed at late stages 

due to lack of clearly identifiable symptoms in its early 

stages and corresponding biomarkers; 2) although most late 

stage ovarian cancer patients response to initial 

chemotherapy, cancer can relapse and eventually develop 

chemoresistance in subsequent 

chemotherapies.FIGO(International Federation of Obstetrics 

and Gynecology) stage is the traditional tool for predicting 

overall survival, but its prediction power is very 

limited.Reliable molecular markers that are complementary 

to clinical variables are needed for better prognostic 

stratification of patients and individualized therapy. 

 

2. Material and methods 

2.1. Data collection and processing 

For MDS, the data in Gerstunget. al. (2015) 

(Supplementary Data 1 and 2, available at  

http://www.nature.com/ncomms/2015/150109/ncomms690

1/full/ncomms6901.html) including clinical information, 

gene expression and mutation, was used. Gene expression 

data (GEO accession GSE58831) are from bone marrow 

CD34+ cells of patients with MDS using platform GPL570 

(AffymetrixGeneChip Human Genome U133 Plus 2.0 

arrays). Details of how mutation data was obtained can be 

found in (PAPAEMMANUIL et al. 2013).Clinical data are 

available for 142 MDS patients, where 24 of them had 0 

survival time and were excluded from the analysis. The 

outcome of interest is acute myeloid leukaemia (AML) free 

survival. For clinical covariates, we used those suggested by 

the paper, including age, gender, peripheral blood cytopenia, 

haemoglobin, platelets, bone marrow blasts and ring 

sideroblasts. For gene expression, 124 samples have 21762 

features profiled. Even though we can analyze all the 21762 

features, considering that large number of genes may cause 

computational instability and the number of genes related to 

AML free survival is not expected to be too large, we filtered 

the expression data using variance with cutoff 0.9 and 

selected 2177 genes for prediction. For mutation, there are 

43 genes in the dataset. Only 18 driver genes with at least 2 

patients having mutations were used for prediction. 

Combined clinical, gene expression and mutation data were 

available for 118 MDS patients. Clinical characteristics of 

this cohort are shown in (Table 1). Finally, missing values 

were imputed using the mean across samples.

 

Table 1. Clinical characteristics of MDS patients 

Number of patients 118 
Clinical outcomes  
     Follow up time (days) median 668.5; range (7, 3141) 
     Outcome (alive/dead) 78 / 40 
     AML transformation (positive/negative) 13 / 97 ; 8 missing 
Clinical covariates  
     Age  median 67; range (19, 87); 2 missing 
     Gender (male/female) 77 / 41 
     Peripheral  blood cytopenia  (yes/no) 62 / 42; 14 missing 
Haemoglobin (g/dl) median 9.7; range (5.4, 14.6); 4 missing 
     Platelets (× 109per liter) median 165; range (10, 1042); 4 missing 
Bone marrow blasts median 6.3%; range(2.5%, 62.4%); 13 missing 
     Ring sideroblasts median 2.5%; range  (2.5%, 91.8%); 13 missing 

For ovarian cancer, all data including clinical 

information, mRNA expression and somatic mutation were 

downloaded from the cancer genome atlas (TCGA) 

(http://tcga-data.nci.nih.gov/docs/publications/ov_2011) as 

of May 2015 using TCGA-Assembler. Expression 

measurements were combined from three platforms: Agilent, 

AffymetrixHuEx and Affymetrix U133A. We used the 

processed level 3 (log2 lowess normalized (cy5/cy3) 

http://tcga-data.nci.nih.gov/docs/publications/ov_2011
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collapsed by gene symbol) expression data. For mutation, 

massive parallel sequencing was performed on the Illumina 

GAIIx platform or ABI SOLiD 3 platform. Details about 

expression and mutation data can be found in (Cancer 

Genome Atlas Research 2011). 598 ovarian cancer patients 

have clinical data. The outcome of interest is overall 

survival. 194 patients with overall survival time missing or 

equal to 0 were removed. Race, age, tumor grade, residual 

largest nodule, anatomic neoplasm subdivision and clinical 

stage were selected as the clinical covariates and there are no 

missing values. For gene expression, 594 samples have 

12042 features profiled (no missing values). We filtered the 

expression data using variance with cutoff 0.8 and selected 

2409 genes for survival analysis. Mutation data has 463 

samples with 12446 features profiled (no missing values).99 

genes for which at least 10 patients have mutations were kept 

for survival analysis. Combined clinical, expression and 

mutation data were available for 335 patients. Summary of 

the clinical information for these 335 ovarian cancer patients 

are provided in (Table 2). Finally, all the covariates were 

standardized (categorical variables were only centered). 

 

Table 2. Clinical characteristics of ovarian cancer patients 

Number of patients 335 
Clinical outcomes  
     Overall survival (days) median 928; range (36, 3953) 
     Outcome (alive/dead) 158 / 177 
Clinical covariates  
     Age  median 57; range (26, 89) 
     Race (White / Non-white) 305 / 30 
     Cancer stage  
        Stage I & II 19 
        Stage III 266 
        Stage IV 50 
     Tumor grade  
        G1 & G2 44 
        G3 & G4 283 
        GX 8 
Residual disease largest nodule  
< 1 mm 83 
       1 - 10 mm 171 
       11 - 20 mm 60 
> 20 mm 60 
     Anatomic neoplasm subdivision  
        Bilateral 253 
        Left 43 
        Right 39 
     First course treatment outcome    
       Complete remission 237 
       Partial remission 36 
       Progressive 32 
       Stable 30 

2.2. Statistical methods for building prediction models 

Cox regression is the commonly used method for 

analyzing censored survival data (van Houwelinggen and 

Putter, 2012), for which the hazard function of survival time 

T takes the form , where is the baseline 

hazard function, X and are the vectors of predictors and 

coefficients, respectively, and  is the linear predictor or 

called the prognostic index. The coefficients are estimated 

by maximizing the partial log-likelihood: 

 

where the censoring indicator di takes 1 if the observed 

survival time ti for individual i is uncensored and 0 if it is 

censored, and  is the risk set at time .For expression 

and mutation data, the number of variables is much larger 

than the number of individuals and covariates are usually 

correlated, where Cox regression is not directly applicable.  

 

 

2.3. Ridge, lasso and elastic-net Cox models  

The elastic net is a widely used penalization approach to 

handle high-dimensional models, which adds the elastic-net 

penalty to the log-likelihood function and estimates the 

parameters  by maximizing the penalized log-

likelihood(Zou and Hastie, 2005a; Hastie et al., 2009; 

Friedman et al., 2010; Simon et al., 2011; Hastie et al., 2015). 

For the Cox models described above, we estimate the 

parameters  by maximizing the penalized partial log-

likelihood:  

 

where  ( ) is a predetermined elastic-net 

parameter,  ( ) is a penalty parameter, and  is 

the partial log-likelihood of the Cox model. The penalty 

parameter  controls the overall strength of penalty and the 

size of the coefficients; for a small , many coefficients can 

be large, and for a large , many coefficients will be shrunk 

towards zero. The elastic net includes the lasso ( ) and 

ridge Cox regression ( ) as special cases. A remarkable 

property of the lasso is that many coefficients can be shrunk 

exactly to zero, thus automatically achieving variable 
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selection. But if a group of predictors are highly correlated, 

lasso tends to pick only one of them and shrink others to zero, 

therefore it’s not good for group selection. Ridge regression 

shrinks all coefficients towards zero, but will retain all the 

predictors and therefore can not be used for variable 

selection. Elastic net is able to handle “group effect”, where 

highly correlated predictors tend to be in or out of the model 

together. And it is usually more useful than lasso when p>>n, 

while enjoying a similar sparsity of representation (Zou and 

Hastie, 2005b) . 

The ridge, lasso and elastic net Cox models can be fitted 

by the cyclic coordinate descent algorithm, which 

successively optimizes the penalized log-likelihood over 

each parameter with others fixed and cycles repeatedly until 

convergence. The cyclic coordinate descent algorithm has 

been implemented in the R package glmnet. The package 

glmnet can quickly fit the elastic-net Cox models over a grid 

of values of  covering the entire range, giving a sequence 

of models for users to choose from. Cross-validation is the 

most widely used method to select an optimal value  (e.g., 

an optimal Cox model) that gives minimum cross-validated 

error. 

 

2.4. Bayesian hierarchical Cox model 

Hierarchical model is an efficient approach to handling 

high-dimensional data, where the regression coefficients are 

themselves modeled (Gelman and Hill, 2007; Gelman et al., 

2014). Hierarchical models are more easily interpreted and 

handled in the Bayesian framework where the distribution of 

the coefficient is the prior distribution, and statistical 

inference is based on the posterior estimation. The 

commonly used prior is the double-exponential (or Laplace) 

prior distribution (Park and Casella, 2008; Yi and Xu, 2008; 

Yi and Ma, 2012): 

 

where the scale sis shrinkage parameter and controls the 

amount of shrinkage; a smaller scale s induces stronger 

shrinkage and thus forces the estimates of towards the 

prior mean zero. The hierarchical Cox model with the 

double-exponential prior performs similarly as lasso, and the 

log posterior distribution of the parameters can be expressed 

as  

 

We fit the hierarchical Cox model by finding the posterior 

modes of the parameters, i.e., estimating the parameters by 

maximizing the log posterior distribution. We have 

developed an algorithm for fitting the hierarchical Cox 

model by incorporating an EM procedure into the usual 

Newton-Raphson algorithm for fitting classical Cox models. 

Our algorithm has been implemented in R package BhGLM 

(Hochberg and Tamhane, 1987). 

2.5. Two-stage approach for integrating clinical, gene 

expression and mutation variables  

To evaluate whether expression and mutation can help 

improve the prediction, the usual approach is to combine 

different types of data directly in a single prediction model 

(Bovelstad et al., 2009). However, due to the correlation 

between clinical, expression and mutation variables, fitting a 

single model including all three types of variables can lead 

to dramatic changes in coefficient estimates and the selection 

of expression and mutation predictors, and may not improve 

the prediction performance with the increased model 

complexity.  

Here we develop an alternative approach, i.e., a two-stage 

procedure, inspired by the super learner of van der Laan et 

al. (2007) (van Houwelingen and Putter, 2011; van 

Houwelinggen and Putter, 2012). A flowchart for the two-

stage procedure using ovarian cancer as an example is shown 

in (Figure 1). In the first stage, we separately fit clinical, 

expression and mutation covariates (model (a), (b), (c))  

using ridge, lasso, elastic net and Bayesian hierarchical Cox 

models. For lasso, ridge and elastic net models, we used 10-

fold cross-validation to select λ. Since different cross-

validation partition can result in different estimates of λ, we 

repeated 10-fold cross-validation 10 times and used their 

mean as the optimal λ. For Bayesian hierarchical models, we 

used for expression and mutation, and s=1 for 

clinical model as the scale of the double exponential prior, 

where λ was the optimal λ in lasso Cox regression. Then we 

used the optimal λ or s to refit the corresponding model and 

performed 10-fold cross-validation 10 times to get an 

averaged cross-validated prognostic index (PICV). In the 

second stage, PICV for different types of predictors are 

handled as new covariates and used for building integrative 

models. We fit the integrative models I and II using PICV 

from clinical, expression and mutation models. Since the 

prognostic indices summarized all the prognostic 

information of clinical, expression and mutation data, the 

integrative model can efficiently integrate multiple sources 

of information to the prediction. 

Denote Clinical covariates as Z, Expression information 

as X, Mutation information as Y, we have the following 

models: 

 Clinical model:h(t|Z) = ℎ0(𝑡)exp (𝑍𝑇𝛾) leads to 

PIclin,CV(a) 

 Expression model: h(t|X) = ℎ0(𝑡)exp (𝑋𝑇𝛽) leads to 

PIExpr,CV(b) 

 Mutation model: h(t|Y) = ℎ0(𝑡)exp (𝑌𝑇𝜂) leads to 

PIMut,CV(c) 

 Integrative model I: h(t|PI) = ℎ0(𝑡)exp (𝛽1PI𝐶𝑙𝑖𝑛,𝐶𝑉
𝑇 +

𝛽2PI𝐸𝑥𝑝𝑟,𝐶𝑉
𝑇 ) 

 Integrative model II: h(t|PI) =
ℎ0(𝑡)exp (𝛼1PI𝐶𝑙𝑖𝑛,𝐶𝑉

𝑇 + 𝛼2PI𝐸𝑥𝑝𝑟,𝐶𝑉
𝑇 + 𝛼3PI𝑀𝑢𝑡,𝐶𝑉

𝑇 ) 

 

 





 
1

~ | 0, exp
2

j

j jDE s
s s


 

 
  
 
 

j

1

1
log ( | , ) ( )

J

j

j

p t d pl
s

  


  

1 / ( )s n



A two-stage approach for improving survival prediction 

 5 

 
Fig. 1 – Flowchart of the two-stage procedure 

 

2.6. Evaluating the predictive performance 

To assess the prognostic utility of the fitted model, we 

need to evaluate the quality of the fitted model and its 

predictive value. There are several ways to measure the 

performance of a Cox model (Steyerberg, 2009; van 

Houwelinggen and Putter, 2012) : 1)Partial likelihood: For 

a Cox model, the partial likelihood can be used as an overall 

measure. Smaller partial likelihood corresponds to better 

model fit; 2) Survival curves: An important way to show the 

usefulness of a survival model is to depict the survival curves 

for different groups of the patients based on the prognostic 

index. The usefulness of a survival model can then be 

assessed by the apparent differences (e.g., log-rank test) 

between the survival curves; 3) Concordance index (C-

index): The C-index measures the discriminative ability of a 

survival model, which is similar to the Area under the ROC 

Curve (AUC) for logistic regression (Harrell et al., 1996; van 

Houwelinggen and Putter, 2012). Larger C-index 

corresponds to better prediction and C-index ≤ 0.5 means no 

predictive ability; 4) Prediction error: Measuring 

prediction error is an important way to evaluate predictive 

performance of a survival model. The most popular 

measurement for prediction error is the Brier score, which is 

defined as , where  is 

the estimated survival probability of an individual beyond t0 

given the predictor x (van Houwelinggen and Putter, 2012). 

Cross-validation is a standard way to evaluate the 

predictive performance of a model. For a K-fold cross-

validation (usually K = 10) (Hastie et al., 2009), we randomly 

split the data to K subsets of roughly the same size, and use 

(K – 1) subsets (the training data) to fit a model and then 

assess the performance of the fitted model on the remaining 

part, the k-th subset of the data (the test data). We used the 

pre-validation method, a variant of cross-validation 

(Tibshirani and Efron, 2002; Hastie et al., 2015). Denote the 

estimates of coefficients from the data excluding the k-th 

subset by . We calculated the prognostic index 

 for all individuals in the k-th subset of the data, 

which is called the cross-validated or pre-validated 

prognostic index. Cycling through K parts, we obtained the 

cross-validated prognostic index  for all individuals. We 

then calculated the four measures described in the last 

paragraph using the cross-validated prognostic index, 

yielding the cross-validated versions of model performance 

measures (Steyerberg, 2009; van Houwelinggen and Putter, 

2012) .This procedure provides valid assessment of the 

predictive performance of a model (Tibshirani and Efron, 

2002; Hastie et al., 2015). In order to obtain truly stable 

results, we repeated the cross-validation procedure 10 times, 

and used their average values. 

 

3. Results 

We first analyzed each type of predictors (i.e., clinical, 

gene expression and somatic mutation) separately for MDS 

and ovarian cancer, using three penalized Cox models (ridge, 

lasso and elastic net with α = 0.5) and Bayesian hierarchical 

Cox model. We then combined their cross-validated 

prognostic indices to build integrative prognostic models. 

(Table 3) and (Table 4) show the cross-validated C-index 

and cross-validated partial likelihood (CVPL) for each type 

of predictors, respectively. For MDS under the elastic net 

model, gene expression had the best prediction performance 

(C-index:0.71; CVPL: -212.3),which was moderately better 

than clinical covariates (C-index: 0.69; CVPL: -206.8) and 

considerably better than mutation (C-index: 0.59; CVPL: -

219.2). The trend was similar under lasso and Bayesian 

hierarchical model, but under ridge model, clinical 

covariates had a higher C-index (0.68) than expression (0.65) 

and mutation (0.59).  

 

Table 3. Cross-validated C-index of ridge, elastic net, lasso and Bayesian hierarchical Cox models 
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    Estimate of C statistics (SD) 

Cancer Data Type Ridge Elastic net Lasso Bayesian 

Type   α=0    α=0.5 α=1 hierarchical 

MDS Clinical 0.68 (0.012) 0.68 (0.011) 0.68 (0.011) 0.68 (0.010) 

  Expression 0.65 (0.012) 0.71 (0.016) 0.69 (0.015) 0.70 (0.014) 

  Mutation 0.59 (0.010) 0.59 (0.010) 0.55 (0.021) 0.55 (0.022) 

  PIclin,cv and PIexpr,cv 0.68 0.72 0.71 0.71 

  PIclin,cv ,PIexpr,cv and PImut,cv 0.68 0.74 0.71 0.72 

Ovarian Clinical 0.70 (0.002) 0.70 (0.004) 0.70 (0.004) 0.70 (0.003) 

Cancer Expression 0.60 (0.015) 0.58 (0.016) 0.58 (0.016) 0.57 (0.019) 

  Mutation 0.53 (0.008) 0.49 (0.017) 0.48 (0.018) 0.49 (0.017) 

  PIclin,cv and PIexpr,cv 0.71 0.71 0.71 0.71 

  PIclin,cv ,PIexpr,cv and PImut,cv 0.72 0.71 0.71 0.71 

 

Table 4. – Cross-validated partial likelihood (CVPL) of ridge, elastic net, lasso and Bayesian hierarchical Cox models 

    CVPL   mean (SD) 

Cancer Data Type Ridge Elastic net Lasso Bayesian 

Type   α=0    α=0.5 α=1 hierarchical 

MDS Clinical -206.3 (1.1) -206.3 (1.1) -207.2 (1.5) -208.0 (1.8) 

  Expression -215.9 (1.3) -212.3 (2.8) -215.2 (1.9) -214.7 (1.5) 

  Mutation -219.2 (0.6) -219.2 (0.6) -221.1 (0.6) -221.4 (1.0) 

  PIclin,cv and PIexpr,cv -163.8 -161.8 -163.2 -162.8 

  PIclin,cv ,PIexpr,cv and PImut,cv -163.5 -159.0 -161.9 -160.0 

Ovarian Clinical -858.0 (1.3) -859.8 (1.8) -859.1 (2.2) -860.1 (2.4) 

cancer  Expression -882.0 (1.3) -881.8 (2.8) -880.6 (2.8) -883.0 (2.7) 

  Mutation -887.0 (0.4) -888.2 (0.5) -888.5 (0.7) -888.2 (0.6) 

  PIclin,cv and PIexpr,cv -706.0 -705.4 -704.6 -706.4 

  PIclin,cv ,PIexpr,cv and PImut,cv -705.9 -705.4 -704.0 -705.4 

For ovarian cancer, under all the Cox models, clinical 

data always had the best prediction performance (C-index: 

0.70; CVPL: around -859), expression came second (C-

index: around 0.58; CVPL: around -882)and mutation was 

the worst (C-index: around 0.49; CVPL: around -888). For 

expression and mutation, ridge Cox model tends to perform 

better than other models (C-index:  0.60 for expression and 

0.53 for mutation).Similar to MDS mutation, ovarian cancer 

mutation data had the worst prediction performance 

regardless of which Cox model was used. 

The lasso, elastic net, and Bayesian hierarchical Cox 

models not only provide prediction but also identify 

prognostic variables. The coefficients estimates of lasso and 

Bayesian hierarchical models were shown in supplementary. 

Then we combined the PICV of clinical, expression and 

mutation models to build integrative prognostic models 

using the two-stage procedure (integrative model I and II). It 

can be seen from (Table 3) and (Table 4), for both MDS and 

ovarian cancer, integrative model I improved the predictive 

accuracy in terms of both C-index and CVPL. The prediction 

performance of the integrative model II was very similar to 

that of the integrative model I, indicating mutation did not 

add independent prognostic information. Since the 

integrative model I and II perform similarly under different 

Cox model, we only discuss the results of Bayesian 

hierarchical models in the following section. For MDS, the 

C-index and CVPL for the integrative model I and II were 

0.71 and -162.8, 0.72 and -160.0 respectively, which were 

moderately better than the expression only model (C-index 

0.70, CVPL -214.7). Similarly, for ovarian, the integrative 

model I and II improved the prediction (C-index 0.71 and 

CVPL -706.4 for integrative model vs C-index 0.70 and 

CVPL -860.1 for clinical only model). For both MDS and 

ovarian cancer under other Cox models, the integrative 

model I and II were also moderately better than any of the 

models based on single type of predictors. 

Finally, the predictive performance of these Cox models 

was assessed by prediction error using Brier scores from the 

Bayesian hierarchical Cox models. It can be seen from 

(Figure 2) that for both MDS and ovarian cancer, the 

integrative model I and II had smaller prediction errors 

compared to any of the models based on single type of 

predictors. To show the predictive usefulness of the 

integrative models, patients were divided into two subgroups 

by the median of the PIcv from the Bayesian hierarchical Cox 

model. The Kaphlan-Meier survival curves for MDS and 

ovarian cancer were shown in (Figure 3) and (Figure 4), 

respectively. For both MDS and ovarian cancer, the 

integrative models resulted in larger difference between 

curves, and thus produce more predictable survival, even 

though the improvement was not spectacular compared with 

models with only expression or clinical covariates. 
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Fig. 2  – Brier prediction errorcurves for MDS and ovarian cancer 

 

 

 

Fig. 3 – Kaplan-Meier Survival Curves. (a-d) Kaplan-Meier survival curves for patients predicted to have above or 

below median risk of death due to MDS. P-values are from log rank test. 

 

a b 

d c 
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Fig. 4 – Kaplan-Meier Survival Curves. (a-d) Kaplan-Meier survival curves for patients predicted to have above or 

below median risk of death due to ovarian cancer (OC). P-values are from log rank test. 

 

4. Discussion 

In this article we propose a two-stage procedure that 

addresses the challenge of effectively integrating different 

levels of genomic measurements with clinical data for 

improving survival outcome.  Instead of simply jointly 

analyzing all types of data in one model, the two-stage 

procedure builds an integrative model using the cross 

validated prognostic index obtained from individual models. 

The two-stage procedure is easy to implement and provides 

an unbiased view of the contributions of different types of 

data to the prediction model. Our analyses of MDS and 

ovarian cancer data show that jointly fitting PIcv from 

clinical, gene expression and mutation models improved the 

prediction of survival outcome, in terms of increased C-

index and CVPL, and reduced prediction error, compared to 

models with only traditional clinical factors. However, the 

improvement is not dramatic, with the major contribution 

from either clinical predictors or expression. This suggests 

that the information shared by clinical predictors, expression 

and mutation contains more prognostic information than 

independent components.  

Among the genes that we identified in this study (as 

shown in appendix), some have already been reported to be 

associated with MDS or ovarian cancer, while others have 

not. For MDS expression, 13 genes (TM4SF1, MX2, 

PTP4A3, C1ORF191, NCRNA00230A, AMT, FAM184B, 

TTTY14, GJA1, CD93, RPS10, EIF1AY, PTH2R) were 

selected by all the models. PTP4A3 has been identified as a 

negative prognostic indicator in human AML (Beekman et 

al., 2011). GJA1 is the target of RUNX1 which is highly 

significantly mutated in AML and leukemic translocations 

that involve RUNX1 (Matsuura et al., 2012). CD93 

expression is functionally required for engraftment of 

primary human AML leukemia stem cells (LSCs) and 

leukemogenesis, and it regulates LSCs self-renewal 

predominantly by silencing CDKN2B, a major tumor 

suppressor in AML (Iwasaki et al., 2015). RPS10 was found 

rarely mutated in Diamond-Blackfan anemia patients and 

they have a higher-than-average chance of developing MDS 

(Doherty et al. 2010). Over expression of PTH2R has found 

to be associated with reduced overall survival in MDS 

patients (Zeidan et al., 2014).No study has found the 

association between MDS and the rest of the genes yet. For 

ovarian cancer expression, 17 genes (PRAME, FJX1, 

RAB11FIP1, HSPA1A, IFRD1, CST6, GBP2, NLRP2, 

FLNA, PRSS16, PART1, PPM2C, BLMH, SDF2L1, PEX6, 

GJB1, NARS2) were selected by all the models. PRAME has 

been indicated as a prognostic factor in stage III serious 

ovarian adenocarcinomas (Partheen et al., 2006; Partheen et 

al., 2008). FJX1 was detected in vascular structures in 

a 

d c 

b 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=NCRNA00230A
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=Fam184b
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ovarian cancer samples, it expresses at very low levels in 

normal ovarian vasculature (Buckanovich et al., 2007). 

RAB11FIP1, which encodes a protein with ras-activating 

function, has been frequently amplified in breast cancer 

(Zhang et al., 2009). It has also been shown that RAB11FIP1 

(also known as Rab-coupling protein) can enhance invasive 

migration of cancer cells into fibronectin-rich 3D ECM by 

endocytic recycling of α5β1 integrin (Jacquemet et al., 2013; 

Paul et al., 2015). There is no report on the association 

between the rests of genes selected with ovarian cancer so 

far. The genes we identified could give us more insight into 

the molecular mechanisms of the disease. They could also be 

potential targets for new treatment, or potential signature for 

improving prognostic power. The specific role of those genes 

still needs to be validated by biological experiments. 

Our study suggests that the prediction power of clinical 

information, expression and mutation varies in different 

types of cancer. For MDS, gene expression tends to slightly 

outperform clinical data, while for ovarian cancer clinical 

factors have higher prediction power than gene expression. 

The prediction power of mutation is relatively low in both 

MDS and ovarian cancer. These findings are consistent with 

results from previous studies where features measured at 

transcription level tends to contain more prognostic 

information than features measured at DNA/epigenetic level. 

From a biologic point of view, this is reasonable because 

features measured at DNA/epigenetic level affect clinical 

outcome through its effect on expression and most of the 

meaningful information in mutation will be captured by 

expression. On the other hand, there are still many other 

types of cancer that we need to explore and it’s possible that 

for some cancer types, mutation still have prognostic utility. 

Therefore, new methods are still in need to more efficiently 

extract information from mutation data.  

It can also be noted that the results are method dependent. 

For example, ridge regression was the least favorable method 

for MDS expression, but was the best method for ovarian 

cancer expression.  Lasso, elastic net and Bayesian 

Hierarchical model tends to have similarly results. In 

practice, it is impossible to know the underlying structure of 

the data and which method is the most appropriate. But a 

thorough understanding of the advantage and disadvantage 

of different methods can help narrow down the list. And it 

may be necessary to compare different methods to choose 

the one that can best extract the prognostic information.  

In this study, only clinical, expression and mutation were 

used for prediction. TCGA also provides other levels of 

genetic data, e.g. DNA methylation, miRNA and copy 

number alterations, for more than 30 types of cancer. 

Therefore one future direction is to apply the two stage 

procedure to other types of data and cancer, and further 

evaluate the utility of the two-stage procedure. 

 

References 

Hastie, T., Tibshirani, R., & Friedman, J. The elements of 

statistical learning. 

Hastle, T., Tibshirani, R., & Wainwright, M. (2015). 

Statistical learning with sparsity. Boca Raton: CRC Press. 

Hochberg, Y. & Tamhane, A. (1987). Multiple 

comparison procedures. New York: Wiley. 

Iwasaki, M., Liedtke, M., Gentles, A., & Cleary, M. 

(2015). CD93 Marks a Non-Quiescent Human Leukemia 

Stem Cell Population and Is Required for Development of 

MLL-Rearranged Acute Myeloid Leukemia. Cell Stem Cell, 

17(4), 412-421. http://dx.doi.org/10.1016/j.stem. 

2015.08.008 

Jacquemet, G., Green, D., Bridgewater, R., von 

Kriegsheim, A., Humphries, M., Norman, J., & Caswell, P. 

(2013). RCP-driven α5β1 recycling suppresses Rac and 

promotes RhoA activity via the RacGAP1–IQGAP1 

complex. J Cell Biol, 202(6), 917-935. 

http://dx.doi.org/10.1083/jcb.201302041 

Matsuura, S., Komeno, Y., Stevenson, K., Biggs, J., Lam, 

K., & Tang, T. et al. (2012). Expression of the runt homology 

domain of RUNX1 disrupts homeostasis of hematopoietic 

stem cells and induces progression to myelodysplastic 

syndrome. Blood, 120(19), 4028-4037. 

http://dx.doi.org/10.1182/blood-2012-01-404533 

Network, T. (2012). Erratum: Integrated genomic 

analyses of ovarian carcinoma. Nature, 490(7419), 292-292. 

http://dx.doi.org/10.1038/nature11453 

Papaemmanuil, E., Gerstung, M., Malcovati, L., Tauro, 

S., Gundem, G., & Van Loo, P. et al. (2013). Clinical and 

biological implications of driver mutations in 

myelodysplastic syndromes. Blood, 122(22), 3616-3627. 

http://dx.doi.org/10.1182/blood-2013-08-518886 

Houwelingen, J. & Putter, H. (2012). Dynamic prediction 

in clinical survival analysis. Boca Raton: CRC Press. 

Park, T. & Casella, G. (2008). The Bayesian Lasso. 

Journal Of The American Statistical Association, 103(482), 

681-686. http://dx.doi.org/10.1198/016214508000000337 

Partheen, K., Levan, K., Österberg, L., & Horvath, G. 

(2006). Expression analysis of stage III serous ovarian 

adenocarcinoma distinguishes a sub-group of survivors. 

European Journal Of Cancer, 42(16), 2846-2854. 

http://dx.doi.org/10.1016/j.ejca.2006.06.026 

Partheen, K., Levan, K., Österberg, L., Claesson, I., 

Fallenius, G., Sundfeldt, K., & Horvath, G. (2008). Four 

potential biomarkers as prognostic factors in stage III serous 

ovarian adenocarcinomas. International Journal Of Cancer, 

123(9), 2130-2137. http://dx.doi.org/10.1002/ 

ijc.23758 

Paul, N., Allen, J., Chapman, A., Morlan-Mairal, M., 

Zindy, E., & Jacquemet, G. et al. (2015). α5β1 integrin 

recycling promotes Arp2/3-independent cancer cell invasion 

via the formin FHOD3. The Journal Of Experimental 

Medicine, 212(10), 21210OIA78. 

http://dx.doi.org/10.1084/jem.21210oia78 

Riester, M., Wei, W., Waldron, L., Culhane, A., Trippa, 

L., & Oliva, E. et al. (2014). Risk Prediction for Late-Stage 

Ovarian Cancer by Meta-analysis of 1525 Patient Samples. 

JNCI Journal Of The National Cancer Institute, 106(5), 

dju048-dju048. http://dx.doi.org/10.1093/jnci/dju048 

Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. 

(2011). Regularization Paths for Cox's Proportional Hazards 

Model via Coordinate Descent. Journal Of Statistical 

Software, 39(5). http://dx.doi.org/10.18637/ 

jss.v039.i05 

Steyerberg, E. (2009). Clinical prediction models. New 

York: Springer. 

Tibshirani, R. & Efron, B. (2002). Pre-validation and 

inference in microarrays. Statistical Applications In Genetics 

And Molecular Biology, 1(1). 

http://dx.doi.org/10.2202/1544-6115.1000 

Yi, N. & Ma, S. (2012). Hierarchical Shrinkage Priors 

and Model Fitting for High-dimensional Generalized Linear 



Nengjun Yi at al. 

 10 

Models. Statistical Applications In Genetics And Molecular 

Biology, 11(6). http://dx.doi.org/10.1515/1544-6115.1803 

Yi, N. & Xu, S. (2008). Bayesian LASSO for 

Quantitative Trait Loci Mapping. Genetics, 179(2), 1045-

1055. http://dx.doi.org/10.1534/genetics.107.085589 

Yuan, Y., Van Allen, E., Omberg, L., Wagle, N., Amin-

Mansour, A., & Sokolov, A. et al. (2014). Assessing the 

clinical utility of cancer genomic and proteomic data across 

tumor types. Nature Biotechnology, 32(7), 644-652. 

http://dx.doi.org/10.1038/nbt.2940 

Zeidan, A., Prebet, T., Saad Aldin, E., & Gore, S. (2014). 

Risk stratification in myelodysplastic syndromes: is there a 

role for gene expression profiling?. Expert Review Of 

Hematology, 7(2), 191-194. http://dx.doi.org/10.1586/ 

17474086.2014.891437 

Zhang, J., Liu, X., Datta, A., Govindarajan, K., Tam, W., 

& Han, J. et al. (2009). RCP is a human breast cancer–

promoting gene with Ras-activating function. Journal Of 

Clinical Investigation. http://dx.doi.org/10.1172/jci37622 

Zou, H. & Hastie, T. (2005). Regularization and variable 

selection via the elastic net. Journal Of The Royal Statistical 

Society: Series B (Statistical Methodology), 67(2), 301-320. 

http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

  



A two-stage approach for improving survival prediction 

 11 

ДВУХСТУПЕНЧАТЫЙ ПОДХОД К ОБЪЕДИНЕНИЮ ЭКСПРЕССИИ ГЕНОВ И МУТАЦИИ С 

КЛИНИЧЕСКИМИ ДАННЫМИ УЛУЧШАЕТ ПРОГНОЗ ВЫЖИВАЕМОСТИ ПРИ 

МИЕЛОДИСПЛАСТИЧЕСКИХ СИНДРОМАХ И РАКЕ ЯИЧНИКОВ 
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Аннотация 

Мотивация: Многие традиционные клинические прогностические факторы в отношении рака давно 

известны, но обычно обеспечивают плохое прогнозирование выживаемости. В настоящее время стала 

более доступной геномная информация, которая дает возможность создания более точных 

прогностических моделей. Задача заключается в том, как их интегрировать для улучшения 

прогнозирования выживаемости. Распространенный подход, состоящий в совместном анализе всех 

типов предикторов непосредственно в рамках одной модели не может повысить точность 

прогнозирование из-за повышенной сложности модели и не может легко применяться к различным 

наборам данных. 

Результаты: Мы предложили двухступенчатую процедуру с целью лучшего совмещения разных 

источников информации для прогнозирования выживаемости и применили эту двухступенчатую 

процедуру к наборам данных двух типов рака: миелодиспластические синдромы (МДС) и рак яичников. 

Наш анализ показывает, что эффективность прогнозирования по различным типам данных очень 

разная, и, благодаря сочетанию клинических данных с данными экспрессии генов и мутации при помощи 

двухступенчатой процедуры, улучшает прогноз выживания, благодаря повышению коэффициента 

конкордации и снижению ошибки прогноза. 

Доступность: Двухступенчатый подход может быть реализован в пакете байесовских иерархических 

обобщенных линейных моделей (BhGLM), который имеется в свободном доступе на 

http://www.ssg.uab.edu/bhglm/. 

Дополнительная информация: Дополнительные данные доступны в Интернете в Журнале 

биоинформатики и геномики. 
 
Ключевые слова: экспансия генов, мутация, клинические данные, прогнозирование выживаемости, 

миелодисплатические синдромы, рак яичников. 
 


