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BIOINFORMATIC TOOLS TO INTERROGATE AND TO MODEL BIOLOGICAL PHENOMENA

A TWO-STAGE APPROACH FOR COMBINING GENE EXPRESSION AND MUTATION WITH
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Abstract
Motivation: Many traditional clinical prognostic factors have been known for cancer for years, but usually provide
poor survival prediction. Genomic information is more easily available now which offers opportunities to build more
accurate prognostic models. The challenge is how to integrate them to improve survival prediction. The common
approach of jointly analyzing all type of covariates directly in one single model may not improve the prediction due to
increased model complexity and cannot be easily applied to different datasets.
Results: We proposed a two-stage procedure to better combine different sources of information for survival prediction,
and applied the two-stage procedure in two cancer datasets: myelodysplastic syndromes (MDS) and ovarian cancer.
Our analysis suggests that the prediction performance of different data types are very different, and combining clinical,
gene expression and mutation data using the two-stage procedure improves survival prediction in terms of improved
concordance index and reduced prediction error.
Availability: The two-stage procedure can be implemented in BhGLM package which is freely available at
http://www.ssg.uab.edu/bhgim/.
Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online.
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1. Introduction biomarkers and build accurate prognostic and predictive

In the past decade, genomics has had an exceptionally
powerful enabling role in biomedical advances. It is now
well recognized that cancer is fundamentally disease of
genome. A short-term goal of Precision Medicine Initiative
is to expand cancer genomics to develop better treatment and
prevention methods (Chaung-Stein, 2006).In order to realize
this goal, we need accurate prognostic models to better
predict mortality and recurrence risks. Many traditional
clinical prognostic and predictive factors have been known
for cancer for years, however, they usually provide poor
prognosis and prediction (Barrilot et al., 2012). Therefore
there is need for new prognostic and predictive factors with
better reproducibility and discriminatory power. Recent
advance in genome technologies has made data profiled on
multiple layers of genomic activities more easily available,
which offers extraordinary opportunities to search for new

models.

It has been indicated in several studies that collectively
analyzing different types of genomic measurements can be
more informative compared to analysis of a single type of
genomic measurement (Yuan et al., 2014; Gerstung et al.,
2015). However, with a high degree of interdependency
among clinical and genomic variables, the challenge is how
to integrate different types of variables and derive the best
combination of predictors to improve the prediction of
survival outcomes. The common approach is jointly
analyzing all the information in a single Cox model using the
methods for high dimension data, e.g., lasso or ridge.
However, the models including all clinical and different
types of genomic measurements can result in different
coefficient estimates compared to models with only one type
of predictors, due to the correlation between these types of
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variables. Therefore, the predictive values of clinical and
genomic variables cannot be easily interpreted, and cannot
easily be applied to other datasets (van Houwelingen and
Putter, 2011). Furthermore, the models simply fitting all
clinical and genomic variables may not improve the
prediction accuracy, because of the increased model
complexity (Bovelstad et al., 2009).

In this paper, we proposed a more efficient and easily
implemented two-stage procedure to integrate different types
of variables, including clinical variables, gene expression
and mutation. We demonstrate the advantage of the two-
stage procedure in two public datasets, Myelodysplastic
syndromes (MDS) (Gerstung et al., 2015) and ovarian cancer
(Cancer genome atlas research, 2011), using penalized Cox
regressions, namely ridge, lasso and elastic net, and Bayesian
hierarchical Cox model. Our goal is to build more accurate
prognostic models for MDS and ovarian cancer using the
two-stage approach, and to compare the overall prediction
performance of clinical model, expression model, mutation
model and integrative models (clinical+expression,
clinical+expression+mutation).

MDS are a heterogeneous group of clonal hematopoietic
stem cell malignancies and are characterized by ineffective
haematopoiesis in the bone marrow (Corey et al., 2007). The
incidence of MDS increases with age and about one third of
patients with MDS will develop acute myeloid leukaemia
(AML). Patients with MDS usually have poor prognosis. In
clinical practice, the International Prognostics Scoring
System (IPSS) is commonly used to determine the outcome
of MDS patients, but its prediction power is not satisfactory
(concordance index = 0.64). Here we are interested in
assessing whether there are additional, independent
prognostic information contained in expression and
mutation. In Gerstunget. al. (2015), the prediction power of
gene expression and mutation were evaluated, but expression
was analyzed using principle component methods (Gerstung
et al., 2015). Even though principle component analysis is a
popular high-dimension reduction method and has the
advantage on data compression, it falls short when it comes
to determine the true predictors and its results are highly data
dependent. Therefore its utility towards precision medicine
is limited.

Ovarian cancer is the leading cause of death from
gynecologic malignancies in the western world. For all types
of ovarian cancer, the 5-year survival rate is 45%, but for
different types, it is quite heterogeneous (Riester et al.,

2014). The low survival rate in ovarian cancer is because of
1) most ovarian cancer patients are diagnosed at late stages
due to lack of clearly identifiable symptoms in its early
stages and corresponding biomarkers; 2) although most late
stage ovarian cancer patients response to initial
chemotherapy, cancer can relapse and eventually develop
chemoresistance in subsequent
chemotherapies.FIGO(International Federation of Obstetrics
and Gynecology) stage is the traditional tool for predicting
overall survival, but its prediction power is very
limited.Reliable molecular markers that are complementary
to clinical variables are needed for better prognostic
stratification of patients and individualized therapy.

2. Material and methods
2.1. Data collection and processing

For MDS, the data in Gerstunget. al. (2015)
(Supplementary Data 1 and 2, available at
http://www.nature.com/ncomms/2015/150109/ncomms690
1/full/ncomms6901.html) including clinical information,
gene expression and mutation, was used. Gene expression
data (GEO accession GSE58831) are from bone marrow
CD34+ cells of patients with MDS using platform GPL570
(AffymetrixGeneChip Human Genome U133 Plus 2.0
arrays). Details of how mutation data was obtained can be
found in (PAPAEMMANUIL et al. 2013).Clinical data are
available for 142 MDS patients, where 24 of them had 0
survival time and were excluded from the analysis. The
outcome of interest is acute myeloid leukaemia (AML) free
survival. For clinical covariates, we used those suggested by
the paper, including age, gender, peripheral blood cytopenia,
haemoglobin, platelets, bone marrow blasts and ring
sideroblasts. For gene expression, 124 samples have 21762
features profiled. Even though we can analyze all the 21762
features, considering that large number of genes may cause
computational instability and the number of genes related to
AML free survival is not expected to be too large, we filtered
the expression data using variance with cutoff 0.9 and
selected 2177 genes for prediction. For mutation, there are
43 genes in the dataset. Only 18 driver genes with at least 2
patients having mutations were used for prediction.
Combined clinical, gene expression and mutation data were
available for 118 MDS patients. Clinical characteristics of
this cohort are shown in (Table 1). Finally, missing values
were imputed using the mean across samples.

Table 1. Clinical characteristics of MDS patients

Number of patients
Clinical outcomes

Follow up time (days)

Outcome (alive/dead)

AML transformation (positive/negative)
Clinical covariates

Age

Gender (male/female)

Peripheral blood cytopenia (yes/no)
Haemoglobin (g/dl)

Platelets (x 10°per liter)
Bone marrow blasts

Ring sideroblasts

118

median 668.5; range (7, 3141)
78140
13/97 ; 8 missing

median 67; range (19, 87); 2 missing

771741

62/ 42; 14 missing

median 9.7; range (5.4, 14.6); 4 missing

median 165; range (10, 1042); 4 missing
median 6.3%; range(2.5%, 62.4%); 13 missing
median 2.5%; range (2.5%, 91.8%); 13 missing

For ovarian cancer, all data including clinical
information, mMRNA expression and somatic mutation were
downloaded from the cancer genome atlas (TCGA)
(http://tcga-data.nci.nih.gov/docs/publications/ov_2011) as

of May 2015 wusing TCGA-Assembler. Expression
measurements were combined from three platforms: Agilent,
AffymetrixHUEx and Affymetrix U133A. We used the
processed level 3 (log2 lowess normalized (cy5/cy3)
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collapsed by gene symbol) expression data. For mutation,
massive parallel sequencing was performed on the Illumina
GAllIx platform or ABI SOLID 3 platform. Details about
expression and mutation data can be found in (Cancer
Genome Atlas Research 2011). 598 ovarian cancer patients
have clinical data. The outcome of interest is overall
survival. 194 patients with overall survival time missing or
equal to 0 were removed. Race, age, tumor grade, residual
largest nodule, anatomic neoplasm subdivision and clinical
stage were selected as the clinical covariates and there are no
missing values. For gene expression, 594 samples have

12042 features profiled (no missing values). We filtered the
expression data using variance with cutoff 0.8 and selected
2409 genes for survival analysis. Mutation data has 463
samples with 12446 features profiled (no missing values).99
genes for which at least 10 patients have mutations were kept
for survival analysis. Combined clinical, expression and
mutation data were available for 335 patients. Summary of
the clinical information for these 335 ovarian cancer patients
are provided in (Table 2). Finally, all the covariates were
standardized (categorical variables were only centered).

Table 2. Clinical characteristics of ovarian cancer patients

Number of patients
Clinical outcomes
Overall survival (days)
Outcome (alive/dead)
Clinical covariates
Age
Race (White / Non-white)
Cancer stage
Stage | & Il
Stage Il
Stage IV
Tumor grade
Gl&G2
G3&G4
GX
Residual disease largest nodule
<1lmm
1-10 mm
11-20 mm
> 20 mm
Anatomic neoplasm subdivision
Bilateral
Left
Right
First course treatment outcome
Complete remission
Partial remission
Progressive
Stable

335

median 928; range (36, 3953)
158 /177

median 57; range (26, 89)
305/30

19
266
50

44
283
8

83
171
60
60

2.2. Statistical methods for building prediction models

Cox regression is the commonly used method for
analyzing censored survival data (van Houwelinggen and
Putter, 2012), for which the hazard function of survival time
T takes the form a(z | X) = h,(t)exp(X ) , Where is the baseline
hazard function, X and g are the vectors of predictors and
coefficients, respectively, and X 3 is the linear predictor or
called the prognostic index. The coefficients S are estimated
by maximizing the partial log-likelihood:

__SpXp)

2. exp(X, /)

JER()
where the censoring indicator di takes 1 if the observed
survival time ti for individual i is uncensored and 0 if it is
censored, and R(%,) isthe risk set at time ¢, .For expression
and mutation data, the number of variables is much larger
than the number of individuals and covariates are usually
correlated, where Cox regression is not directly applicable.

hi@) PUB) =24, log

2.3.Ridge, lasso and elastic-net Cox models

The elastic net is a widely used penalization approach to
handle high-dimensional models, which adds the elastic-net
penalty to the log-likelihood function and estimates the
parameters S by maximizing the penalized log-
likelihood(Zou and Hastie, 2005a; Hastie et al., 2009;
Friedman et al., 2010; Simon et al., 2011; Hastie et al., 2015).
For the Cox models described above, we estimate the
parameters ,8 by maximizing the penalized partial log-
likelihood:

PPl ()= plp) - 2% | B, |41 =) 7]

wherea (0<a<1) is a predetermined elastic-net
parameter, 4 (420) is a penalty parameter, and pl(B) is
the partial log-likelihood of the Cox model. The penalty
parameter 4 controls the overall strength of penalty and the
size of the coefficients; for a small 4 , many coefficients can
be large, and for a large 4 , many coefficients will be shrunk
towards zero. The elastic net includes the lasso («=1) and
ridge Cox regression (a =0) as special cases. A remarkable
property of the lasso is that many coefficients can be shrunk
exactly to zero, thus automatically achieving variable
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selection. But if a group of predictors are highly correlated,
lasso tends to pick only one of them and shrink others to zero,
therefore it’s not good for group selection. Ridge regression
shrinks all coefficients towards zero, but will retain all the
predictors and therefore can not be used for variable
selection. Elastic net is able to handle “group effect”, where
highly correlated predictors tend to be in or out of the model
together. And it is usually more useful than lasso when p>>n,
while enjoying a similar sparsity of representation (Zou and
Hastie, 2005b) .

The ridge, lasso and elastic net Cox models can be fitted
by the cyclic coordinate descent algorithm, which
successively optimizes the penalized log-likelihood over
each parameter with others fixed and cycles repeatedly until
convergence. The cyclic coordinate descent algorithm has
been implemented in the R package glmnet. The package
glmnet can quickly fit the elastic-net Cox models over a grid
of values of 24 covering the entire range, giving a sequence
of models for users to choose from. Cross-validation is the
most widely used method to select an optimal value 4 (e.g.,
an optimal Cox model) that gives minimum cross-validated
error.

2.4.Bayesian hierarchical Cox model

Hierarchical model is an efficient approach to handling
high-dimensional data, where the regression coefficients are
themselves modeled (Gelman and Hill, 2007; Gelman et al.,
2014). Hierarchical models are more easily interpreted and
handled in the Bayesian framework where the distribution of
the coefficient is the prior distribution, and statistical
inference is based on the posterior estimation. The
commonly used prior is the double-exponential (or Laplace)
prior distribution (Park and Casella, 2008; Yi and Xu, 2008;
Yiand Ma, 2012):

1 B
$; ~ DE(B; |0,s)—23exp[—s’]

where the scale sis shrinkage parameter and controls the
amount of shrinkage; a smaller scale s induces stronger
shrinkage and thus forces the estimates of g towards the
prior mean zero. The hierarchical Cox model with the
double-exponential prior performs similarly as lasso, and the
log posterior distribution of the parameters can be expressed
as

log p(A|t,d) o P'(ﬂ)—%Z‘ﬂj‘

We fit the hierarchical Cox model by finding the posterior
modes of the parameters, i.e., estimating the parameters by
maximizing the log posterior distribution. We have
developed an algorithm for fitting the hierarchical Cox
model by incorporating an EM procedure into the usual
Newton-Raphson algorithm for fitting classical Cox models.

Our algorithm has been implemented in R package BhGLM
(Hochberg and Tamhane, 1987).

2.5. Two-stage approach for integrating clinical, gene
expression and mutation variables

To evaluate whether expression and mutation can help
improve the prediction, the usual approach is to combine
different types of data directly in a single prediction model
(Bovelstad et al., 2009). However, due to the correlation
between clinical, expression and mutation variables, fitting a
single model including all three types of variables can lead
to dramatic changes in coefficient estimates and the selection
of expression and mutation predictors, and may not improve
the prediction performance with the increased model
complexity.

Here we develop an alternative approach, i.e., a two-stage
procedure, inspired by the super learner of van der Laan et
al. (2007) (van Houwelingen and Putter, 2011; van
Houwelinggen and Putter, 2012). A flowchart for the two-
stage procedure using ovarian cancer as an example is shown
in (Figure 1). In the first stage, we separately fit clinical,
expression and mutation covariates (model (a), (b), (c))
using ridge, lasso, elastic net and Bayesian hierarchical Cox
models. For lasso, ridge and elastic net models, we used 10-
fold cross-validation to select A. Since different cross-
validation partition can result in different estimates of A, we
repeated 10-fold cross-validation 10 times and used their
mean as the optimal L. For Bayesian hierarchical models, we
used s=1/(nA) for expression and mutation, and s=1 for
clinical model as the scale of the double exponential prior,
where A was the optimal A in lasso Cox regression. Then we
used the optimal A or s to refit the corresponding model and
performed 10-fold cross-validation 10 times to get an
averaged cross-validated prognostic index (Plcv). In the
second stage, Plcv for different types of predictors are
handled as new covariates and used for building integrative
models. We fit the integrative models | and II using Plcv
from clinical, expression and mutation models. Since the
prognostic indices summarized all the prognostic
information of clinical, expression and mutation data, the
integrative model can efficiently integrate multiple sources
of information to the prediction.

Denote Clinical covariates as Z, Expression information
as X, Mutation information as Y, we have the following
models:

o Clinical
Pleiincv(a)

o Expression model: h(t|X) = ho(t)exp(XTB) leads to
P|Expr,CV(b)

e Mutation model: h(t]Y) = ho(t)exp(YTn) leads to
Plmut,cv(C)

e Integrative model I: h(t|PI) = ho(t)exp(BiP1L i v +
szlgxpr,cv)

o Integrative model Il: h(t|PI) =
ho(©)exp(@1 PGy cv + @2Plixpr.cv + 3Plijurcy)

model:h(t|Z) = ho(t)exp(ZTy) leads to
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Ovarian cancer dataset

Overall

oAt Clinical Expression Mutation
Hierarchical Hierarchical Hierarchical
C del
T 'ox mode! Coefficient | Cox model Coefficient Cox model
estimates Cross estimates Cross estimates Cross
validation validation validation Stage 1
c i3 ¢ c
CVPL
Index Index oL Index oL
PIclin,t.'V P'Expr,cv PIMut,CV
Cox model
= 18 T
h(t|PI) = ho(t)exp(py Pltiin,cy + B2 plExpr,CV)
= T 7l T
h(t|PI) = ho(t)exp(ay Pljincy + @2Plgepr cv + @3Plyye ov)
Stage 2

C
Index

PL

Fig. 1 — Flowchart of the two-stage procedure

2.6.Evaluating the predictive performance

To assess the prognostic utility of the fitted model, we
need to evaluate the quality of the fitted model and its
predictive value. There are several ways to measure the
performance of a Cox model (Steyerberg, 2009; van
Houwelinggen and Putter, 2012) : 1)Partial likelihood: For
a Cox model, the partial likelihood can be used as an overall
measure. Smaller partial likelihood corresponds to better
model fit; 2) Survival curves: An important way to show the
usefulness of a survival model is to depict the survival curves
for different groups of the patients based on the prognostic
index. The usefulness of a survival model can then be
assessed by the apparent differences (e.g., log-rank test)
between the survival curves; 3) Concordance index (C-
index): The C-index measures the discriminative ability of a
survival model, which is similar to the Area under the ROC
Curve (AUC) for logistic regression (Harrell et al., 1996; van
Houwelinggen and Putter, 2012). Larger C-index
corresponds to better prediction and C-index < 0.5 means no
predictive ability; 4) Prediction error: Measuring
prediction error is an important way to evaluate predictive
performance of a survival model. The most popular
measurement for prediction error is the Brier score, which is
defined as Brier(y, S(t, | X)) = (y — S(t, | x))> , Where S(t, |x) is
the estimated survival probability of an individual beyond to
given the predictor x (van Houwelinggen and Putter, 2012).

Cross-validation is a standard way to evaluate the
predictive performance of a model. For a K-fold cross-
validation (usually K = 10) (Hastie et al., 2009), we randomly
split the data to K subsets of roughly the same size, and use
(K — 1) subsets (the training data) to fit a model and then
assess the performance of the fitted model on the remaining
part, the k-th subset of the data (the test data). We used the
pre-validation method, a variant of cross-validation
(Tibshirani and Efron, 2002; Hastie et al., 2015). Denote the

estimates of coefficients from the data excluding the k-th
subset by A0 . We calculated the prognostic index
flay = X8 forall individuals in the k-th subset of the data,
which is called the cross-validated or pre-validated
prognostic index. Cycling through K parts, we obtained the
cross-validated prognostic index 7, for all individuals. We
then calculated the four measures described in the last
paragraph using the cross-validated prognostic index,
yielding the cross-validated versions of model performance
measures (Steyerberg, 2009; van Houwelinggen and Pultter,
2012) .This procedure provides valid assessment of the
predictive performance of a model (Tibshirani and Efron,
2002; Hastie et al., 2015). In order to obtain truly stable
results, we repeated the cross-validation procedure 10 times,
and used their average values.

3. Results

We first analyzed each type of predictors (i.e., clinical,
gene expression and somatic mutation) separately for MDS
and ovarian cancer, using three penalized Cox models (ridge,
lasso and elastic net with o = 0.5) and Bayesian hierarchical
Cox model. We then combined their cross-validated
prognostic indices to build integrative prognostic models.

(Table 3) and (Table 4) show the cross-validated C-index
and cross-validated partial likelihood (CVVPL) for each type
of predictors, respectively. For MDS under the elastic net
model, gene expression had the best prediction performance
(C-index:0.71; CVPL: -212.3),which was moderately better
than clinical covariates (C-index: 0.69; CVPL: -206.8) and
considerably better than mutation (C-index: 0.59; CVPL.: -
219.2). The trend was similar under lasso and Bayesian
hierarchical model, but under ridge model, clinical
covariates had a higher C-index (0.68) than expression (0.65)
and mutation (0.59).

Table 3. Cross-validated C-index of ridge, elastic net, lasso and Bayesian hierarchical Cox models
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Estimate of C statistics (SD)

Cancer Data Type Ridge Elastic net Lasso Bayesian
Type 0=0 0=0.5 o=1 hierarchical
MDS Clinical 0.68(0.012)  0.68(0.011)  0.68 (0.011) 0.68 (0.010)
Expression 0.65(0.012)  0.71(0.016)  0.69 (0.015) 0.70 (0.014)
Mutation 0.59(0.010)  0.59 (0.010)  0.55 (0.021) 0.55 (0.022)
Plciincv and Plexpr.cv 0.68 0.72 0.71 0.71
Plclin,cv .P|expr,cv and Plmut,cv 0.68 0.74 0.71 0.72
Ovarian Clinical 0.70 (0.002) 0.70 (0.004) 0.70 (0.004) 0.70 (0.003)
Cancer Expression 0.60 (0.015)  0.58(0.016)  0.58 (0.016) 0.57 (0.019)
Mutation 0.53(0.008)  0.49(0.017)  0.48 (0.018) 0.49 (0.017)
Plciincv and Plexpr.cv 0.71 0.71 0.71 0.71
Pleiin,cv ,Plexpr.cv and Plmut,cv 0.72 0.71 0.71 0.71

Table 4. — Cross-validated partial likelihood (CVPL) of ridge, elastic net, lasso and Bayesian hierarchical Cox models

CVPL mean (SD)

Cancer Data Type Ridge Elastic net Lasso Bayesian
Type o=0 0=0.5 o=1 hierarchical
MDS Clinical -206.3(1.1)  -206.3(1.1)  -207.2(15) -208.0 (1.8)
Expression 2159 (1.3)  -212.3(2.8)  -215.2(1.9) -214.7 (1.5)
Mutation -219.2 (0.6) -219.2 (0.6) -221.1(0.6) -221.4 (1.0)
Plclin,cv and Plexpr,cv -163.8 -161.8 -163.2 -162.8
Plciin,cv ,Plexpr.cv and Plmut,cv -163.5 -159.0 -161.9 -160.0
Ovarian Clinical -858.0 (1.3) -859.8 (1.8) -859.1 (2.2) -860.1 (2.4)
cancer Expression -882.0 (1.3) -881.8 (2.8) -880.6 (2.8) -883.0 (2.7)
Mutation -887.0 (0.4) -888.2 (0.5) -888.5 (0.7) -888.2 (0.6)
Plclin,cv and Plexpr,cv -706.0 -705.4 -704.6 -706.4
Plciin,cv ,Plexpr.cv and Plmut,cv -705.9 -705.4 -704.0 -705.4

For ovarian cancer, under all the Cox models, clinical
data always had the best prediction performance (C-index:
0.70; CVPL: around -859), expression came second (C-
index: around 0.58; CVPL: around -882)and mutation was
the worst (C-index: around 0.49; CVPL: around -888). For
expression and mutation, ridge Cox model tends to perform
better than other models (C-index: 0.60 for expression and
0.53 for mutation).Similar to MDS mutation, ovarian cancer
mutation data had the worst prediction performance
regardless of which Cox model was used.

The lasso, elastic net, and Bayesian hierarchical Cox
models not only provide prediction but also identify
prognostic variables. The coefficients estimates of lasso and
Bayesian hierarchical models were shown in supplementary.

Then we combined the Plcv of clinical, expression and
mutation models to build integrative prognostic models
using the two-stage procedure (integrative model I and I1). It
can be seen from (Table 3) and (Table 4), for both MDS and
ovarian cancer, integrative model | improved the predictive
accuracy in terms of both C-index and CVPL. The prediction
performance of the integrative model 11 was very similar to
that of the integrative model I, indicating mutation did not
add independent prognostic information. Since the
integrative model | and 1l perform similarly under different
Cox model, we only discuss the results of Bayesian
hierarchical models in the following section. For MDS, the

C-index and CVPL for the integrative model | and Il were
0.71 and -162.8, 0.72 and -160.0 respectively, which were
moderately better than the expression only model (C-index
0.70, CVPL -214.7). Similarly, for ovarian, the integrative
model | and Il improved the prediction (C-index 0.71 and
CVPL -706.4 for integrative model vs C-index 0.70 and
CVPL -860.1 for clinical only model). For both MDS and
ovarian cancer under other Cox models, the integrative
model | and Il were also moderately better than any of the
models based on single type of predictors.

Finally, the predictive performance of these Cox models
was assessed by prediction error using Brier scores from the
Bayesian hierarchical Cox models. It can be seen from
(Figure 2) that for both MDS and ovarian cancer, the
integrative model | and Il had smaller prediction errors
compared to any of the models based on single type of
predictors. To show the predictive usefulness of the
integrative models, patients were divided into two subgroups
by the median of the Plcv from the Bayesian hierarchical Cox
model. The Kaphlan-Meier survival curves for MDS and
ovarian cancer were shown in (Figure 3) and (Figure 4),
respectively. For both MDS and ovarian cancer, the
integrative models resulted in larger difference between
curves, and thus produce more predictable survival, even
though the improvement was not spectacular compared with
models with only expression or clinical covariates.
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Fig. 4 — Kaplan-Meier Survival Curves. (a-d) Kaplan-Meier survival curves for patients predicted to have above or
below median risk of death due to ovarian cancer (OC). P-values are from log rank test.

4. Discussion

In this article we propose a two-stage procedure that
addresses the challenge of effectively integrating different
levels of genomic measurements with clinical data for
improving survival outcome. Instead of simply jointly
analyzing all types of data in one model, the two-stage
procedure builds an integrative model using the cross
validated prognostic index obtained from individual models.
The two-stage procedure is easy to implement and provides
an unbiased view of the contributions of different types of
data to the prediction model. Our analyses of MDS and
ovarian cancer data show that jointly fitting Plcv from
clinical, gene expression and mutation models improved the
prediction of survival outcome, in terms of increased C-
index and CVPL, and reduced prediction error, compared to
models with only traditional clinical factors. However, the
improvement is not dramatic, with the major contribution
from either clinical predictors or expression. This suggests
that the information shared by clinical predictors, expression
and mutation contains more prognostic information than
independent components.

Among the genes that we identified in this study (as
shown in appendix), some have already been reported to be
associated with MDS or ovarian cancer, while others have
not. For MDS expression, 13 genes (TM4SF1l, MX2,

PTP4A3, CIORF191, NCRNAQO0230A, AMT, FAM184B,
TTTY14, GJAL, CD93, RPS10, EIF1AY, PTH2R) were
selected by all the models. PTP4A3 has been identified as a
negative prognostic indicator in human AML (Beekman et
al., 2011). GJA1 is the target of RUNX1 which is highly
significantly mutated in AML and leukemic translocations
that involve RUNX1 (Matsuura et al., 2012). CD93
expression is functionally required for engraftment of
primary human AML leukemia stem cells (LSCs) and
leukemogenesis, and it regulates LSCs self-renewal
predominantly by silencing CDKN2B, a major tumor
suppressor in AML (Iwasaki et al., 2015). RPS10 was found
rarely mutated in Diamond-Blackfan anemia patients and
they have a higher-than-average chance of developing MDS
(Doherty et al. 2010). Over expression of PTH2R has found
to be associated with reduced overall survival in MDS
patients (Zeidan et al., 2014).No study has found the
association between MDS and the rest of the genes yet. For
ovarian cancer expression, 17 genes (PRAME, FJX1,
RAB11FIP1, HSPA1A, IFRD1, CST6, GBP2, NLRP2,
FLNA, PRSS16, PART1, PPM2C, BLMH, SDF2L1, PEX®6,
GJB1, NARS2) were selected by all the models. PRAME has
been indicated as a prognostic factor in stage Il serious
ovarian adenocarcinomas (Partheen et al., 2006; Partheen et
al., 2008). FIX1 was detected in vascular structures in
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ovarian cancer samples, it expresses at very low levels in
normal ovarian vasculature (Buckanovich et al., 2007).
RAB11FIP1, which encodes a protein with ras-activating
function, has been frequently amplified in breast cancer
(Zhang et al., 2009). It has also been shown that RAB11FIP1
(also known as Rab-coupling protein) can enhance invasive
migration of cancer cells into fibronectin-rich 3D ECM by
endocytic recycling of a5p1 integrin (Jacquemet et al., 2013;
Paul et al., 2015). There is no report on the association
between the rests of genes selected with ovarian cancer so
far. The genes we identified could give us more insight into
the molecular mechanisms of the disease. They could also be
potential targets for new treatment, or potential signature for
improving prognostic power. The specific role of those genes
still needs to be validated by biological experiments.

Our study suggests that the prediction power of clinical
information, expression and mutation varies in different
types of cancer. For MDS, gene expression tends to slightly
outperform clinical data, while for ovarian cancer clinical
factors have higher prediction power than gene expression.
The prediction power of mutation is relatively low in both
MDS and ovarian cancer. These findings are consistent with
results from previous studies where features measured at
transcription level tends to contain more prognostic
information than features measured at DNA/epigenetic level.
From a biologic point of view, this is reasonable because
features measured at DNA/epigenetic level affect clinical
outcome through its effect on expression and most of the
meaningful information in mutation will be captured by
expression. On the other hand, there are still many other
types of cancer that we need to explore and it’s possible that
for some cancer types, mutation still have prognostic utility.
Therefore, new methods are still in need to more efficiently
extract information from mutation data.

It can also be noted that the results are method dependent.
For example, ridge regression was the least favorable method
for MDS expression, but was the best method for ovarian
cancer expression.  Lasso, elastic net and Bayesian
Hierarchical model tends to have similarly results. In
practice, it is impossible to know the underlying structure of
the data and which method is the most appropriate. But a
thorough understanding of the advantage and disadvantage
of different methods can help narrow down the list. And it
may be necessary to compare different methods to choose
the one that can best extract the prognostic information.

In this study, only clinical, expression and mutation were
used for prediction. TCGA also provides other levels of
genetic data, e.g. DNA methylation, miRNA and copy
number alterations, for more than 30 types of cancer.
Therefore one future direction is to apply the two stage
procedure to other types of data and cancer, and further
evaluate the utility of the two-stage procedure.

References

Hastie, T., Tibshirani, R., & Friedman, J. The elements of
statistical learning.

Hastle, T., Tibshirani, R., & Wainwright, M. (2015).
Statistical learning with sparsity. Boca Raton: CRC Press.

Hochberg, Y. & Tamhane, A. (1987). Multiple
comparison procedures. New York: Wiley.

lwasaki, M., Liedtke, M., Gentles, A., & Cleary, M.
(2015). CD93 Marks a Non-Quiescent Human Leukemia
Stem Cell Population and Is Required for Development of

MLL-Rearranged Acute Myeloid Leukemia. Cell Stem Cell,

17(4), 412-421. http://dx.doi.org/10.1016/j.stem.
2015.08.008
Jacquemet, G., Green, D., Bridgewater, R., von

Kriegsheim, A., Humphries, M., Norman, J., & Caswell, P.
(2013). RCP-driven a5B1 recycling suppresses Rac and
promotes RhoA activity via the RacGAP1-IQGAP1
complex. J Cell Biol, 202(6), 917-935.
http://dx.doi.org/10.1083/jcb.201302041

Matsuura, S., Komeno, Y., Stevenson, K., Biggs, J., Lam,
K., & Tang, T. etal. (2012). Expression of the runt homology
domain of RUNX1 disrupts homeostasis of hematopoietic
stem cells and induces progression to myelodysplastic
syndrome. Blood, 120(19), 4028-4037.
http://dx.doi.org/10.1182/blood-2012-01-404533

Network, T. (2012). Erratum: Integrated genomic
analyses of ovarian carcinoma. Nature, 490(7419), 292-292.
http://dx.doi.org/10.1038/nature11453

Papaemmanuil, E., Gerstung, M., Malcovati, L., Tauro,
S., Gundem, G., & Van Loo, P. et al. (2013). Clinical and
biological implications of driver mutations in
myelodysplastic syndromes. Blood, 122(22), 3616-3627.
http://dx.doi.org/10.1182/blood-2013-08-518886

Houwelingen, J. & Putter, H. (2012). Dynamic prediction
in clinical survival analysis. Boca Raton: CRC Press.

Park, T. & Casella, G. (2008). The Bayesian Lasso.
Journal Of The American Statistical Association, 103(482),
681-686. http://dx.doi.org/10.1198/016214508000000337

Partheen, K., Levan, K., Osterberg, L., & Horvath, G.
(2006). Expression analysis of stage Ill serous ovarian
adenocarcinoma distinguishes a sub-group of survivors.
European Journal Of Cancer, 42(16), 2846-2854.
http://dx.doi.org/10.1016/j.ejca.2006.06.026

Partheen, K., Levan, K., Osterberg, L., Claesson, 1.,
Fallenius, G., Sundfeldt, K., & Horvath, G. (2008). Four
potential biomarkers as prognostic factors in stage 111 serous
ovarian adenocarcinomas. International Journal Of Cancer,
123(9), 2130-2137. http://dx.doi.org/10.1002/
ijc.23758

Paul, N., Allen, J., Chapman, A., Morlan-Mairal, M.,
Zindy, E., & Jacquemet, G. et al. (2015). a5B1 integrin
recycling promotes Arp2/3-independent cancer cell invasion
via the formin FHOD3. The Journal Of Experimental
Medicine, 212(10), 2121001A78.
http://dx.doi.org/10.1084/jem.212100ia78

Riester, M., Wei, W., Waldron, L., Culhane, A., Trippa,
L., & Oliva, E. et al. (2014). Risk Prediction for Late-Stage
Ovarian Cancer by Meta-analysis of 1525 Patient Samples.
JNCI Journal Of The National Cancer Institute, 106(5),
dju048-dju048. http://dx.doi.org/10.1093/jnci/dju048

Simon, N., Friedman, J., Hastie, T., & Tibshirani, R.
(2011). Regularization Paths for Cox's Proportional Hazards
Model via Coordinate Descent. Journal Of Statistical
Software, 39(5). http://dx.doi.org/10.18637/
j$5.v039.i05

Steyerberg, E. (2009). Clinical prediction models. New
York: Springer.

Tibshirani, R. & Efron, B. (2002). Pre-validation and
inference in microarrays. Statistical Applications In Genetics
And Molecular Biology, 1(2).
http://dx.doi.org/10.2202/1544-6115.1000

Yi, N. & Ma, S. (2012). Hierarchical Shrinkage Priors
and Model Fitting for High-dimensional Generalized Linear



Nengjun Yi at al.

Models. Statistical Applications In Genetics And Molecular
Biology, 11(6). http://dx.doi.org/10.1515/1544-6115.1803

Yi, N. & Xu, S. (2008). Bayesian LASSO for
Quantitative Trait Loci Mapping. Genetics, 179(2), 1045-
1055. http://dx.doi.org/10.1534/genetics.107.085589

Yuan, Y., Van Allen, E., Omberg, L., Wagle, N., Amin-
Mansour, A., & Sokolov, A. et al. (2014). Assessing the
clinical utility of cancer genomic and proteomic data across
tumor types. Nature Biotechnology, 32(7), 644-652.
http://dx.doi.org/10.1038/nbt.2940

Zeidan, A., Prebet, T., Saad Aldin, E., & Gore, S. (2014).
Risk stratification in myelodysplastic syndromes: is there a

10

role for gene expression profiling?. Expert Review Of
Hematology, 7(2), 191-194. http://dx.doi.org/10.1586/
17474086.2014.891437

Zhang, J., Liu, X., Datta, A., Govindarajan, K., Tam, W.,
& Han, J. et al. (2009). RCP is a human breast cancer—
promoting gene with Ras-activating function. Journal Of
Clinical Investigation. http://dx.doi.org/10.1172/jci37622

Zou, H. & Hastie, T. (2005). Regularization and variable
selection via the elastic net. Journal Of The Royal Statistical
Society: Series B (Statistical Methodology), 67(2), 301-320.
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x



A two-stage approach for improving survival prediction

JIBYXCTYNEHYATBIN MOJIX0/1 K OFbEIUHEHUIO SKCITPECCAU TEHOB U MYTAIIAN C
KIMHUYECKUMU JAHHBIMUA YJIYUYIHAET ITPOT'HO3 BBIXKKUBAEMOCTH ITPU
MUEJOJUCHIACTUYECKUX CUHAPOMAX U PAKE SINYHUKOB

Qunancuposanue
Jannas paboma Ovina evinonnena npu noodepacke uccreoogamenvckux epanmos: NIH 2 R0O1IGM069430, NSFC
81573253, NIHRO3DE024198, NIH R01GM081488, NIH P60AR064172, NIH UL1TR001417, and NSF DMS-
1462990.

Kongnuxkm unmepecos
He yxazan.

Sn JIu (Yan Li)!, Cunbsan Yskan (Xinyan Zhang)!, Tomun Axkununemuazy (Tomi Akinyemiju)?, Akunuemu
H. Oiiecuna (Akinyemi L. Ojesina)?, Txepd M. Coruosckn (Jeff M. Szychowski)!, Hanuzons Jlio
(Nianjun Liu)%, Bo Cioii (Bo Xu)®, Henbuzions Mu (Nengjun Yi)®

Kadenpa 6uocratuctuku, YHusepcuter Anadamsl B bupmunreme, Bupmunrem, Anabama 35294, CIIIA,
2Kadenpa snuaemuonoruy, YuusepcuteT Anabamel B bupmunreme, bupmunrem, Anabama 35294, CIIA,
SKadenpa onkosnoruu, FOsxHbIi uccnenopaTenbckuil MHCTUTYT, Bupmunrem, Ana6ama 35205, CIIA

*Koppecnonaupyromuit aBTop.
Penakrop: Ixankapno KactenbsiHo

IMonyuena 26 Mrons 2016; nopadorana 28 Urons 2016; npunsita 15 Centsi6ps 2016

Annomauyus
Momuseayun: Mrnozue mpaouyuonHvie KIUHUYECKUE NPOSHOCMUYECKUE (PAKMOPbl 8 OMHOWEHUU PAKad OA6HO
U38ECMHbL, HO 0OBLIYHO 06ECheyUsarom nioxoe NPOSHOUPOBaAHUe Gbldcusaemocmu. B nacmoswee epema cmana
bonee OOCMYNHOU 2eHOMHAs UH@OpMayus, Komopas oOdem 603MONCHOCMb CO30aHus 001ee MOYHbIX
npocHOCMuUYeCKUx Mooenel. 3adaua 3aKnouaemcs 6 mMOM, KAK UX UHMezpuposamv ONiad  VAyYuleHus
npozHo3uposanua vixcusaemocmu. Pacnpocmpanennviii nooxoo, cocmoswuii 6 cOBMeCmMHOM AHATU3E B8CEX
MUno8 NpeouKmopos HenocpeOCMeeHHo 6 PAMKAX OOHOU MOOenu He MOdCem MNOBbICUTNL MOYHOCHb
NPOZHO3UPOBAHUE U3-30 NOBLIUEHHOU CONCHOCU MOOETU U He MOXMCem Ne2KO NPUMEHAMbCA K PA3TUYHbIM
HAbOpam OAHHbIX.
Pesynomamui: Mot npeonodxcunu 08yXCMYNEeHYAMYI0 NPoyeoypy € Yeavio Jy4ue20 COBMeweHus. pasHbixX
UCMOUHUKO8 UHpOpMayuU 0N NPOSHOZUPOSAHUS BLIHCUBAEMOCIU U NPUMEHULU OMY O8YXCIYNEHUAMYIO
npoyedypy K Habopam OauHbIX 08YX MUNO8 paka: muerooucniacmuyeckue cunopomsl (MAC) u pax auunuxos.
Haw ananuz noxasvigaem, umo 3@ghekmusHocns NPOSHOZUPOBAHUS NO PA3TUYHBIM MUNAM OAHHBIX OYEHb
pasHas, u, 61a200aps COYEMAaHU0 KIUHUYECKUX OAHHbIX C OUHHBLMU IKCIPECCULU 2EHO8 U MYMAyuu nPU NOMOWU
08YXCMYNeHYamot npoyedypul, Yayuuiaem NpPOSHO3 GbIJCUBAHUS, 01a200aps NOGbIUEHUI0 Ko duyuenma
KOHKOPOAYUU U CHUICEHUIO OWUOKU NPOSHO3A.
Hocmynnocmu: J[gyxcmynenuamolil n0OX00 ModHcem ObiMb Peaiu308an 6 naKeme OAeco8CKUX UepapxuyecKux
obobwennvix  aunelinvlx  mooenert  (BhGLM),  xomopwiii  umeemcs 6 ce0b00HoM  docmyne  Ha
http://www.ssg.uab.edu/bhglm/.
Hononnumensvnas ungopmayus: JJonornumensvuvie Oauuvlie oocmynnvl 8 Humepneme ¢ JIKypuane
OUOUHPDOPMAMUKY U 2EHOMUKU.

Knrouesvie cnosa:. sxcnamncus CEeHO8, mymayus, KIUHUYecKue aaHHble, NPOCHO3UPOBAHUE BbIHCUBAEMOCTIU,
MUETOOUCNAAMUYECKUE CuHapOMbl, PAaK AUYHUKOB.
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