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Abstract
Motivation: The human microbiome plays an important role in human health and disease. The composition of the human
microbiome is influenced by multiple factors and understanding these factors is critical to elucidate the role of the
microbiome in health and disease and for development of new diagnostics or therapeutic targets based on the microbiome.
16S ribosomal RNA (rRNA) gene targeted amplicon sequencing is a commonly used approach to determine the taxonomic
composition of the bacterial community. Operational taxonomic units (OTUs) are clustered based on generated sequence
reads and used to determine whether and how the abundance of microbiome is correlated with some characteristics of the
samples, such as health/disease status, smoking status, or dietary habit. However, OTU count data is not only overdispersed
but also contains an excess number of zero counts due to undersampling. Efficient analytical tools are therefore needed
for downstream statistical analysis which can simultaneously account for overdispersion and sparsity in microbiome data.
Results: In this paper, we propose a Zero-inflated Negative Binomial (ZINB) regression for identifying differentially
abundant taxa between two or more populations. The proposed method utilizes an Expectation Maximization (EM)
algorithm, by incorporating a two-part mixture model consisting of (i) a negative binomial model to account for over-
dispersion and (ii) a logistic regression model to account for excessive zero counts. Extensive simulation studies are
conducted which indicate that ZINB demonstrates better performance as compared to several state-of-the-art approaches,
as measured by the area under the curve (AUC). Application to two real datasets indicate that the proposed method is
capable of detecting biologically meaningful taxa, consistent with previous studies.
Availability: The software implementation of ZINB is available at: http://www.ssg.uab.edu/bhglm/.
Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online.

Keywords: Differential Abundance Testing, EM Algorithm, Human Microbiome, Metagenomics, OTU, Zero-inflated
Negative Binomial.
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containing taxa across the tree of life including bacteria, viruses,
micro-eukaryotes, and archaea (Dethlefsen, McFall-Ngai, &

1. Introduction
The advent of next-generation sequencing (NGS)

technology enables the generation of large volume of
metagenomic sequencing data (Gilbert, Meyer, & Bailey,
2011). This opens a new era of genomics study to explore
microbial communities sampled directly from environments
without isolation and cultivation (Cho & Blaser, 2012;
Hugenholtz, 2002; Wooley & Ye, 2009). One of the
environment is human or mammalian body which harbors a
dense microbial population across different body sites,

Relman, 2007; Whitman, Coleman, & Wiebe, 1998). The
combination of microbiota, their genomes (metagenome), and
the host environment forms human or mammalian microbiome
(Cho & Blaser, 2012). An important research interest in human
microbiome study is to assess whether and how two or more
microbiome communities differ from each other. Many factors
can influence the human microbiome composition (Turnbaugh
et al., 2007). These factors include the host genotype (Spor,
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Koren, & Ley, 2011), host physiological status such as aging
(Biagi et al., 2010), host pathophysiological status (Turnbaugh
et al., 2009), host lifestyle such as dietary habit (De Filippo et
al., 2010; Wu et al., 2011), and host environment (Dominguez-
Bello et al., 2010). Different studies have investigated the
association between the human microbiome and human
diseases such as obesity (Turnbaugh et al., 2006), diabetes
(Samuel & Gordon, 2006), inflammatory bowel disease (IBD)
(Frank et al., 2007), and cancers (Holmes, Li, Athanasiou,
Ashrafian, & Nicholson, 2011). The findings from these
studies demonstrated that the human microbiome has
extraordinary potential implications in new therapeutic targets
or biomarkers for disease prevention and early diagnosis
(Collison et al., 2012; Knights, Parfrey, Zaneveld, Lozupone,
& Knight, 2011; Segata et al., 2011; Virgin & Todd, 2011).

16S ribosomal RNA (rRNA) gene targeted amplicon
sequencing is a commonly used approach to determine the
taxonomic composition and species diversity of the bacterial
community (Matsen, Kodner, & Armbrust, 2010).
Hypervariable regions within the gene are amplified and
sequenced, and sequence reads are clustered into operational
taxonomic units (OTUs) based on sequence similarity (Ghodsi,
Liu, & Pop, 2011). Representative sequences from each cluster
are then classified taxonomically by alignment against a
database of previously characterized 16S ribosomal DNA
(rDNA) reference sequences. The resulting OTU counts are
then used to determine whether and how the abundance of
microbiome is correlated with some characteristics of the
samples, such as health/disease status, smoking status, or
dietary habit.

However, the OTU/taxa data are high-dimensional with
added complexity leading to several statistical challenges. The
first challenge of microbiome data is how to properly account
for variability induced by differences in sequencing depth
across samples. This is due to our inability to accurately specify
the exact number of sequences to be measured on a sample
using currently available technology. Although the total
number of sequences for a given sample is not associated with
any biological feature of the sample, it affects the OTU counts,
and hence, should be accounted for in downstream
bioinformatic and statistical analysis. A common approach to
account for this variation in the total number of sequences is
the total-sum scaling (TSS) normalization, i.e. conversion of
the sequence counts to relative abundance (i.e., taxon
counts/total counts) within a particular sample (Wagner,
Robertson, & Harris, 2011). However, using total counts as the
normalization/scaling factor may be problematic and may lead
to biases in differential abundance estimates (Knights et al.,
2011; Kostic et al., 2012; Paulson, Stine, Bravo, & Pop, 2013).
To adjust for differential sequencing depths, different
approaches such as cumulative sum scaling (CSS) (Paulson et
al., 2013), trimmed mean of M-values (TMM) (Robinson &
Oshlack, 2010), and relative log expression (RLE) (Anders &
Huber, 2010), have been proposed in the literature.
Furthermore, due to the association between detected number
of features (OTUs) and the depth of coverage in different
samples, only a few OTUs are shared in various samples,
whereas the rest are only present in a small proportion of
samples, resulting in excess of zero counts in the OTUs count
matrix (Paulson et al., 2013; Peng, Li, & Liu, 2015).

Second, OTU counts are over-dispersed, meaning the
variance of the counts varies with the value of the mean. For

such overdispersed count data, standard methods such as
Poisson regression can result in high false positives (Peng et al.,
2015; White, Nagarajan, & Pop, 2009). The overdispersed data
have been widely studied in differential expression analysis in
microarray and high-throughput sequencing (serial analysis of
gene expression (SAGE) (Velculescu, Zhang, Vogelstein, &
Kinzler, 1995) and RNA-seq) (McMurdie & Holmes, 2014).
Differential abundance analysis in microbiome is a direct
analogy to differential expression analysis. Many analytical
tools (edgeR and DESeq) developed for differential expression
analysis of RNA-Seq data can be adapted to differential
abundance analysis of OTUs (Anders & Huber, 2010;
Robinson, McCarthy, & Smyth, 2010). For example, White et
al. (2009) extended the methods in differential expression
analysis to microbiome studies by converting the raw
abundances to proportions, which represent the relative
contribution of each feature for each individual. This method
was implemented in the software Metastats. However,
microbiome data have the distinct characteristic of zero-
inflation, which is notably less severe in RNA-seq data. To this
end, various zero-inflated models have been proposed to
correct for sparse counts in microbiome measurements.
Paulson et al. (2013) proposed a zero-inflated Gaussian
mixture model for modeling the CSS-normalized log-
transformed count data using an Expectation Maximization
(EM) algorithm, implemented in the Bioconductor package
metagenomeSeq. Sohn et al. (2015) implemented a ratio
approach for identifying differential abundance (RAIDA) by
utilizing the ratio between features in a modified zero-inflated
lognormal model. Peng et al. (2015) proposed a zero-inflated
beta regression (ZIBSeq) approach for modeling the TSS-
normalized relative abundance data. All these zero-inflated
methods are designed to analyze microbiome data after a
suitable normalization and/or transformation. However,
differential abundance estimates based on these methods may
not be interpretable on the original scale, leading to challenges
in future prediction tasks and replication studies.
To address the above limitations, we propose a Zero-inflated
Negative Binomial (ZINB) mixture model, which directly
models the raw OTU counts. We implemented our model in R
package BhGLM by utilizing an EM algorithm incorporating a
two-part mixture model consisting of (i) negative binomial
model to account for over-dispersion and (ii) a logistic
regression model to account for zero-inflation. In our
simulations, we show that ZINB outperforms DESeq, edgeR,
and metagenomeSeq in various sparse scenarios in terms of
Area under the Curve (AUC) estimates. Application to two real
microbiome data sets reveal biologically significant taxa,
which are consistent with previous studies. The software
implementation of ZINB is freely available at:
http://www.ssg.uab.edu/bhgim/.
2. Methods

Assume that there are n samples and m features. In 16S
rRNA microbiome data, the features refer to OTUSs, species, or
genus, etc. Let Cijj be the observed count for i-th sample and j-
th feature, and Tibe the total read for i-th sample (also referred
to as depths of coverage or library size) or a linear scaling
factor that accounts for its library size. Let X be a factor
indicating host health/disease status, physiological status such
as aging, or lifestyle such as dietary habit, etc. In differential
abundance analysis, the goal is to determine differentially
abundant microbial features between groups defined by the



Zero-inflated negative binomial regression for differential abundance testing in microbiome studies

host factor. We directly model the raw count data with the zero-
inflated negative binomial model. To adjust for differential
sequencing depth, the natural logarithm of total counts (per
sample) are included as offset in the negative binomial model.
This allows us to handle the raw data matrix without
normalization, leading to interpretable differential abundance
estimates. In the following subsection, we describe our model
and algorithm.
2.1. Zero-inflated Negative Binomial (ZINB) Model

ZINB models assume that observed zero counts may come
from either a degenerate distribution having the point mass at
zero or a negative binomial distribution and observed non-zero
counts come exclusively from the negative binomial
distribution. Therefore, the count response for feature j, i.e., yi
= Cjj, follows the mixture distribution:

B 0 with probability p, )
YT INB(Y, | 14,6)  with probability 1- p,

where ;, and ¢ are the mean and the shape parameter of the
negative binomial distribution NB(y, | z,8) , respectively,

and pi are the mixture probability parameters. The mean
parameters g4, are related to the variables Xi (including the

intercept) via the link function logarithm:
log(s) =log(T) + X, (@

where log(T,) is the offset, which corrects for the variation of

the library size. The mixture probability parameters are
modeled by the logistic regression:

logit(p,) = Iog( b j= Zy ®)
1-p

where Ziincludes variables that are potentially associated with
the zero state. We can include only intercept in Zi (as in the
simulation study and real data analysis). However, our method
can be applied to general cases.

The log-likelihood function for the parameters (53, 6) and y
is given by
L(ﬂ,e,y;y):ZIog[pi+(l— pi)NB(yi:0|1ui16)] )

¥i=0

+Z IOg[(l' PINB(Y, =kK]| ﬂi:e)]

%i>0

The first term in the log-likelihood includes both (8, 8) and y
and thus complicates the maximization of the log-likelihood.
In principle, this likelihood can be optimized directly by the
Newton-Raphson algorithm (as implemented by the zeroinfl
function in the R package pscl). However, the Newton-
Raphson algorithm for fitting this model is known to be
unstable and have severe non-convergence issues in small
samples (Mallick & Tiwari, 2016). We thus propose an EM
algorithm, which is stable and efficient, leading to accurate
estimation and inference.
2.2. EM algorithm for fitting the ZINB model

The EM algorithm introduces a vector of latent indictor
variables & = (&,---,&,) todistinguish the zero state from the

negative binomial state, where & = 1 when yi is from the zero
state, and & = 0 when yi is from the negative binomial state.

With the indicator variables, the ZINB model can be expressed
as

if £ =1

y. ~ {0 and
I NB(y; [4,0) if & =0
_p-_&Zn) (5
P& =1= Lrexp(Z)

The log-likelihood with the complete data (y, &) is given by

L(B.0,y; yyﬁ)ZiIOg{ 41— pi)uﬁ} o

+i(l—§i)log(NB(yi | £4,0))

The EM algorithm replaces the indictor variables {&i} by
their conditional expectations { géi } (E-step), and then updates
the coefficients # and y and the shape parameter & by
maximizing L(3,0,; y,é?) (M-step). When the EM algorithm
converges, we obtain the estimate (3,4, 7) that maximizes the
log-likelihood L(3,8,y;y)- In the E-step, we calculate the

conditional expectations of the indictor variables {&}. The
conditional expectation of & can be easily calculated as:

&=p&=18.0.7.Y) @
_ Py 18,0.6 =1 p(& =117)
p(y; | 8.0,& =0)p(& =0] )+ p(y,18.6.5 =) p(& =1]7)

If y, >0, we have p(yi|ﬁ,9,§i=l)=0,andthus
P(& =118,0.7.y,)=0. If y, =0, we have

P& =11 5,6,7,,)=[exp(~s7)NB(y, =0| 4, 6) +1] -

In the M-step, we update the parameters (3,6,y) by

maximizing L(/3,0,7;y, ). The coefficients 4 and y can be

separately updated, because y is only involved in the first term

of the log-likelihood, ilog{p.‘f‘ - p_)lfg,}, and g and 6 are
i=1

only involved in the second term Zn:(l—é.)log(NB(y. | 14,6))

i=1
. The first term is the log-likelihood for an unweighted
binomial regression of g on S, and the second term is the log-
likelihood for a weighted negative binomial regression of y on
X with the weights (1—5). The parameters £ and 6 can be
updated by fitting the weighted negative binomial regression,
and y can be updated by fitting the unweighted binomial

regression.
At convergence of the algorithm, we summarize the

inferences using the latest estimate ﬂ and its covariance

Var(/}) , which can be obtained from the final weighted

negative binomial model. Thus, we can get the maximum
likelihood estimates of the coefficients gj, which stands for the
parameter coefficient for jth predictor, and their confidence
intervals, and test the hypothesis Ho: 5 = 0 by using the statistic
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U = B, /Var(ﬁj) , Which approximately follow the
standard normal distribution.

2.3. IWLS algorithm for fitting the negative binomial model

The above EM algorithm needs fitting a weighted negative
binomial model. We extend the IWLS (lterative Weighted
Least Square) algorithm for generalized linear models to fit the
weighted negative binomial model. Our algorithm is based on
the well-known fact that given the shape parameter ¢ the
negative binomial density has the exponential form:

_l—,(yi+g). 0 6'. #i Yi
NB(Y,; | 4,6) = re)y,! [ﬂi+9J [ﬂi+9] ®

{yilgi —b(4)
¢

=exp

+C(yiy¢)}

wherelgi = log Hi

gt c(yi.¢)=|og(r(y‘+9)99]' and

L(9)y;!
j =-0log (1—e9' ) . Therefore,

)z

log—=
b(3)=-0log (1—e #+6

the negative binomial model is a special case of generalized
linear models (GLMs) for any fixed 9.

The IWLS algorithm for fitting the negative binomial model
proceeds as follows. Given the shape parameter 6, the estimate
of 3 can be obtained by fitting the weighted normal linear

model:
z,=log(T,)+ X, +¢, 9)

wheree ~ N(0,(1— &)™ w™) . The pseudo-response z, and
pseudo-weights w; are calculated by

2 = L'(y; Iﬁiﬁ:) .and w, =—L"(y, |4,0) (10)
L"(y; 173, 0)

where ;, —1og(T))+ X8 + L(Y; |73,,0) =10g NB(y; | £4.0) -
L'(Y; [7,,0) = dL(y; |73,,0) / dm, )
L"(y, |7,0) = dL(y, |,60) dy? , and j and & are the
current estimates of 3 and ¢, respectively. Conditional on j,

the shape parameter 6 can be updated by maximizing the NB
likelihood using the standard Newton-Raphson algorithm.

3. Results

3.1. Simulation Studies

We performed extensive simulations to benchmark our
method as compared to several state-of-the art approaches
including DESeq, edgeR, and metagenomeSeq. To simulate
count data for each feature, we generated OTU counts, cij, from
the zero-inflated negative binomial distribution defined in (1).
The ranges of the parameters in the simulation studies are
described below.

We simulated OTU-level count data with 1000 features for
n samples in each of two groups. The sample size n in each
group was set to be 50, 100, and 150. The effects of the first 50
features were set to be non-zero, and the others had zero effects.
In this setting, the parameter Ti denotes the scaling factor for
sample i. We randomly set the offset log(Ti) from the range

[0.1, 3.5], the coefficient 5 from three values (0.5, 1.0, 1.5),

and the shape parameter ¢ from the range [0.1, 8]. To simulate
excess amount of zeros for each feature, we randomly
generated from a Bernoulli trial with a preset proportion of
zeros. We tested five proportions of zeros by varying pi = (0.1,
0.2,0.3,0.4, 0.5). We set these ranges of the parameters similar
to those in Sohn et al. (2015). The ranges of all the parameters
used in the simulation are summarized in Table 1.

Table 1 - Summary of Parameter Ranges in Simulation
Studies
Ranges
Scaling  Unifrom [0.1, 3.5]

Parameter
Logarithm  of
Factor log(Ti)
Shape Parameter @
Coefficient Estimate g
Proportion pi

Uniform [0.1, 8]
(0.5,1.0, 1.5)
(0.1,0.2,0.3, 0.4, 0.5)

We carried out differential abundance analysis for each
simulated feature by using the following methods:

1. edgeR — exactTest - an exact binomial test with negative
binomial model preceded by TMM normalization
(Robinson et al., 2010).

2. DESeq — nbinomTest — a negative binomial conditioned
test similar to edgeR but preceding RLE normalization
(Anders & Huber, 2010)..

3. metagenomeSeq - fitZig and fitFeatureModel. An
Expectation-Maximization estimate of the posterior
probabilities of differential abundance based on a zero
inflated Gaussian model and zero-inflated log-normal
mixture model respectively preceding a CSS
normalization and log-transformation (Paulson et al.,
2013).

4. BhGLM - Zero-inflated Negative Binomial model using
Expectation-Maximization for each feature without any
normalization.

For each combination of parameters, the procedure was
repeated 100 times. All tests were corrected for multiple testing
using Benjamini-Hochberg method to control the False
Discovery Rate at the alpha level of 0.05. AUC, power, and
false positive rate were calculated to compare the performance
of each method. The simulations and real data analyses rely on
the following R packages: BhGLM, DESeq, edgeR, foreach,
ggplot2, metagenomSeq, phyloseq, reshape2, and ROCR. The
reproducible simulation code in R is available upon request
from the first authors.

Curves comparing AUC, power, and type | error rates are
shown in Figures 1-3 to illustrate the performance of BnGLM-
ZINB, DESeq, edgeR, and metagenomeSeq (fitZzig and
fitFeatureModel) on synthetic data with different proportions
of zeros in detecting significant differentially abundant features
for three different sample sizes » =100, 200, and 300
respectively. Corresponding AUC, power, and type | error
quantities are also listed in Tables A.1-A.3 (see Appendix).
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As shown in Figures 1-2 and Tables A.1-A.2, zero-inflated
methods  (BhGLM-ZINB, and  metagenomeSeq-fitZig)
performed similarly on simulated zero inflated data with
respect to AUC. When the sample size is low (n=100) and the
zero-inflation is 50%, the AUCs of BhGLM-ZINB and
metagenomeSeq-fitZig are 0.862 and 0.858, respectively. With
the same sample size but 10% zero-inflation, the AUCs of
BhGLM-ZINB, and metagenomeSeq-fitZig were 0.921 and

0.910, respectively. With respect to empirical power,
metagenomeSeq-fitZig performs slightly well than BhGLM-
ZINB for >30% zero-inflation, while BAGLM-ZINB performs
slightly better than metagenomeSeq-fitZig when the zero-
inflation is 10%. On the other hand, other three methods,
DESeq, edgeR, and metagenomeSeq-fitFeatureModel, have
much lower power regardless of the sparsity level. As the
proportion of zeroes increases, the empirical power of these
methods worsens considerably. In terms of Type-I error rates,
BhGLM-ZINB  performs  consistently ~ better  than
metagenomeSeq-fitFeatureModel across all zero proportions.
When the amount of zero-inflation is 50% and n = 100,
BhGLM-ZINB controls the type | error rate at 0.026, while
metagenomeSeq-fitFeatureModel and edgeR both have a much
higher type | error rate (0.041 and 0.040 respectively). In all
scenarios, the type | error rates are higher for DESeq, edgeR,
and metagenomeSeq-fitFeatureModel, whereas for the
proposed method, it is well-controlled, always lower than 0.03.
In summary, our simulation indicates that the proposed ZINB
method is consistently high in power along with well-
controlled type I error.

3.2. Real Data Analysis

3.2.1.  Lung Microbiome Data

We applied our method to a lung microbiome data from
Charlson et al. (2011). The data was sampled in the respiratory
flora from six healthy individuals. Among them, three
individuals were smokers and the other three were non-
smokers. The two-bronchoscope procedure was used to sample
the respiratory tract, followed by a serial bronchoalveolar
lavage and lower-airway protected brushes. A more detailed
description of the lung microbiome samples, collection, and
protocols is available in Charlson et al. (2011). The processed
OTU level data was acquired directly from the R package
metagenomeSeq. After the rare features were trimmed, we only
include 259 features in our analysis. Differential abundance
analysis to determine the associations between the remaining
features with smoking status of 66 samples was carried out.

Among them, we have listed the top ten significant taxa in
Figure 4. Some of the features are consistent with the
significant taxa selected by the method metagenomeSeq-fitZig.
The first three taxa are Neisseria polysaccharea, Neisseria
meningitides, and Neisseria elongate. Neisseria meningitides
has been reported as an uncommon cause of pneumonia
(Winstead, McKinsey, Tasker, De Groote, & Baddour, 2000).
On the other hand, an infective endocarditis caused by
Neisseria elongata has been reported by (Haddow et al., 2003).
Porphyromonas sp. has been isolated from both Cystic Fibrosis
lung infections and non-small cell lung cancer patients (Rogers
et al., 2004; Sato et al., 2015). Prevotella intermedia has also
been investigated for its synergic effects to induce Severe
Bacteremic Pneumococcal Pneumonia in mice (Nagaoka et al.,
2014).
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Top Significant Differentially Abundant Taxa between Smokers.

and Non-smokers in Lung Microbiome Data.
H 4 2 0 2

Neisseria meningitidis e ! 3.5e-26

Neisseria elongata Emm— : 5.4e-15
Thiobacillus sajanensis — ; 5.de-15
EE— : 4.9e-13

Porphyromonas sp. oral clone AW032

Prevotella intermedia —_— : 3.9e-11

Porphyromonas sp. UQD 414 - 8.7e-11
Prevotella genomosp. P8 - : 1.7e-10
Bulleidia extructa ~— 45009

Fusobacterium sp. oral clone ASCF06 — ! 4.7e-09

Fusobacterium russii e : 6.5e-08

Fig. 4 - Coefficients and P-values for the Top Significant
Differentially Abundant Taxa between Smokers and Non-
smokers in Lung Microbiome Data. The left column is
names of taxa; the right column is p-values. The ranges of
coefficients are presented in the middle column.

3.2.2.  Colorectal Cancer Microbiome Data

We further applied our method to a colorectal cancer gut
microbiome data originally published by Kostic et al. (2012).
They studied a secondary cohort of 95 individuals with both
tumor and normal tissue acquired. A more detailed description
about the gut microbiome samples, collection, and protocols is
available in Kostic et al. (2012). We included 274 features with
zero proportion not greater than 0.8 for 185 samples in our
analysis. The differential abundance analysis was to explore
the association of the features between normal and tumor
samples.

The original study investigated the association between
Fusobacterium and colorectal carcinoma. We have listed the
coefficient estimates for the significant OTUs by phylum for
each genus in Figure 5. The significant differentially abundant
phylum for tumor samples includes Firmicutes, Proteobacteria,
Tenericutes, Actinobacteria, Bacteroidetes, and Fusobacteria.
Consistent with the original study and Wang et al. (2012),
Fusobacteria in cancer samples are significantly enriched.
Besides, the changes in Bacteroidetes and Firmicutes phyla are
similar to the original study. It is presumed in the original study
that Fusobacterium species contribute to the evolvement of
tumor microenvironment, leading to an altered microbiota in
accordance with the ‘alpha-bug’ hypothesis introduced by
Sears and Pardoll (2011). 12 of the Fusobacterium species are
differentially abundant between tumor and normal samples and
four of them are enriched in tumor samples, both consistent
with Kostic et al. (2012).

We also include the coefficients and p-values of top
significant differentially abundant species in Figure 6.
Bacteroides uniformis was reported as an enriched OTU-
related species in healthy volunteers by Wang et al. (2012).
Furthermore, based on the genera of the significant species,
genera Lactococcus, Bacteroides, Fusobacterium, Prevotella,
and Streptococcus exhibited more enriched in cancerous
tissues than normal tissues, which is consistent with Gao et al.
(2015). It is worth noting that two important species among the
significant species in Figure 6 have been reported as antitumor
bacteria. Streptococcus thermophiles has been known as an
effective probiotic in deactivating risk factors of colon cancer
(Wollowski, 1., Rechkemmer, G., & Pool-Zobel, B. L., 2001).

Ruminococcus bromii was investigated for its ability to
degradation of resistant starch in the human colon to potentially
prevent colon cancer (Ze, X., Duncan, S. H., Louis, P., & Flint,
H. J.,, 2012). This confirms that ZINB is able to replicate
findings from previous reports, and can be used as an efficient
tool for differential abundance analysis in future microbiome
studies.
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Fig. 6 - Coefficients and P-values for the Top Significant
Differentially Abundant Species between Normal and
Tumor Samples in Gut Microbiome Data. The left column
is names of taxa; the right column is p-values. The ranges of
coefficients are presented in the middle column.

4. Discussion

Existing differential abundance analysis methods in the
literature can be divided into three main categories: (i) methods
that address the non-negativity and over-dispersion of the
microbiome counts (typically based on negative binomial
distribution) typically preceded by normalization, i.e. DESeq,
DESeq2, and edgeR (Anders & Huber, 2010; Li, Witten,
Johnstone, & Tibshirani, 2012; Peng et al., 2015; Robinson et
al., 2010; White et al., 2009), (ii) methods that rely on some
transformation of the normalized counts (e.g. metagenomeSeq),
and (iii) methods that handle zero-inflation by formulating
some mixture model (e.g. metagenomeSeq, ZIBSeq). While
most of these methods rely on some normalization scheme such
as CSS, TMM, or TSS prior to modeling, the proposed method
bypasses the need of normalization and accounts for sparsity
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and overdispersion simultaneously by directly modeling the
raw counts. This makes ZINB a flexible modeling strategy,
leading to interpretable differential abundance estimates in the
original measurement scale. We have shown the consistency of
ZINB on various types of samples in the simulation study as
well as in two real human microbiome datasets.

In the lung microbiome data and some other previous
studies, we have found that a common problem with the
existing methods is that that they fail to consider clustered
structure (if any) in the data. For example, lung microbiome
data has 78 samples taken from six individuals which were
treated as independent samples in the previous analyses.
Therefore, a future direction of research is to incorporate
random effects in the proposed ZINB model that can account
for clustered structure in the observations. We have optimized
our simulations to the analysis of differential abundance
between two conditions of samples such as healthy versus
diseased in this article. However, our method can be easily
extended to more than two conditions. Finally, even though we
have developed our method for microbiome data, ZINB should
be applicable to other similar types of count data such as RNA-
Seq. This strength significantly broadens the impact of ZINB
among researchers in the biological community.
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Annomauusn
Momueayun: Yenoseueckuii MUKpoOUOM uepaem 8AdCHYIO POb 8 HOPMALLHOM U NAMOOI0SUHECKOM COCHOSHUU
yenogexa. Cocmag Mukpobuoma uenogexa Gopmupyemcs noo GuusHUeM MHOSUX (PAKMOPO8, U NOHUMAHUE IMUX
gaxkmopog umeem pewiaiowee 3navenue O YCMAHOBIEHUSL POIU MUKPOOUOMA 8 HOPMATLHOM U NAMOL02ULECKOM
cOCOAHUU, a makdxice Ol paspadomKu HO8bIX OUASHOCHMUYECKUX UMW Mepanesmudeckux yenel Ha OCHOB8AHUU
Mmurpobuoma. Llenesoe cexsenuposanue amnauxona cewa 16S pubocomanvnoi PHK (pPHK) asnsemca wupoko
UCNOTIL3YeMbIM NOOX000M Ol  OnpedeNieHUusi MAKCOHOMUYEeCKO20 COCmasd OaKmepuaibHo20 Ccoodujecmad.
Onepayuonuvie maxcoHomuyeckue edunuywvl (OTU) epynnupyiomcs 8 Kiacmepvl HA OCHO8e C2eHepUpOSAHHOU
HOCNe008AMENLHOCU  PUOO8 U UCNOAL3VIOMCSL Ol ONpedeNeHus Mo20, KAKUM 00pa3oM OmMHOCUMENbHOe
cooepoicanue MUKpoOuoMa KOppeaupyem ¢ HeKOMOPbIMU XAPAKMEPUCIUKAMU UCTILIMYEMbIX, MAKUMU  KAK
300p060e/NAMONIOZUYECKOe COCMOsIHUE, KYypeHue uiu nuujesvle npusvluku. Tem ne menee, dannvie noocuema OTU ne
MONILKO UMEIOM UYPe36bIYAlIHO CUTbHBIIL pA3OpOC, HO MAKdCe cOo0epicam u30bimoyHoe KOIUYeCH8o HY1esblx
pe3yrpmamos noocuema u3-3a He0OCmamouyHocmu 6vioopku. I[losmomy 011 nociedyrwwezo CmMamucmuyecKko2o
aHanu3a HeobxoouMvl 3heKmusHbvie aHarumuyecKue UHCIMpYMeHmbl, KOMopbvle MO2Yym 0OHOBPEMEHHO YUUmbvleamy
U3OLIMOYHYIO OUCNEPCUIO U PASPEAHCEHHOCHb OAHHBIX MUKPOOUOMA.
Pezynomamet: B 0annoti cmamve npednodcena ompuyamenbHas OUHOMUANbHAS Pe2Peccuto ¢ HyNesbiM pa30ye8om
(ZINB) 05151 6vis61eHUs paziuduii 8 OMHOCUMENbHOM COOePIHCAHUU MAKCOHO8 MedHCOY 08YMSL UL Doiee NONYIAYUAMU.
Ipeonazaemviii cnocob ucnonvsyem aneopumm maxcumusayuu odxcuoanus (EM-ancopumm) nymem exarouenus
cMewanHoll Modenu u3z 08yx uacmeltl, cocmosued u3 (i) ompuyamenvHol OUHOMUANLHOU MoOenu O ydemd
u306moyHoOU Oucnepcuu u (ii) peepecCUOHHOU NOSUCMUYECKOU Moodenu Oiisi yuema U30bIMOUYHO20 KOAUYecmsd
HYesbIX pe3ynbmamos noocuema. Ilpogsoodsmces odwupvle CUMYTAYUOHHBIE UCCIE008AHUSA, KOMOPbLE NOKA3bIBAIOM,
umo ZINB oemoncmpupyem 6onee 6bicOKYI0 3(Phexmuenocms no CpasHenur0 ¢ HeCKONbKUMU COBPEMEHHbIMU
nooxooamu Ha OCHOBanuu uzmeperus niowjaou noo xpusou (AUC). Ilpumenenue npeonazaemozo memooa K 08ym
PpeanvHbiM HAO0pam OGHHBIX NOKA3bIBAEM, YUMo OH CNOCODeH 0OHAPYICUBAMb DUOIO2UYECKU 3HAYUMbIE MAKCOHbL U
CONOCMAagUM ¢ NPeoblOYWUMU UCCIe008AHUAMUL.
JHocmynnocme: Ilpocpammmuoe obecneuenue 0na peanusayuu ZINB oocmynno na: http://www.ssg.uab.edu/bhgim/.
Mononnumensnan ungpopmayun: Jlononnumenvuvie Oanuvie Oocmynuvl 6 Humepneme 6 IKypnane
buounpopmamury u 2eHOMUKU.

Kniwouesvie cnosa: [ugppepenyuanrvnas oyenxa omuocumenvrozo codeposcanus, EM-ancopumm, muxpodbuom
uenogeka, memazenomuxa, OTU, ompuyamenvhas bunomuanvras [peepeccust] ¢ Hynesvim paz0ysom.



