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Abstract 

Motivation: The human microbiome plays an important role in human health and disease. The composition of the human 

microbiome is influenced by multiple factors and understanding these factors is critical to elucidate the role of the 

microbiome in health and disease and for development of new diagnostics or therapeutic targets based on the microbiome. 

16S ribosomal RNA (rRNA) gene targeted amplicon sequencing is a commonly used approach to determine the taxonomic 

composition of the bacterial community. Operational taxonomic units (OTUs) are clustered based on generated sequence 

reads and used to determine whether and how the abundance of microbiome is correlated with some characteristics of the 

samples, such as health/disease status, smoking status, or dietary habit. However, OTU count data is not only overdispersed 

but also contains an excess number of zero counts due to undersampling. Efficient analytical tools are therefore needed 

for downstream statistical analysis which can simultaneously account for overdispersion and sparsity in microbiome data.  

Results: In this paper, we propose a Zero-inflated Negative Binomial (ZINB) regression for identifying differentially 

abundant taxa between two or more populations. The proposed method utilizes an Expectation Maximization (EM) 

algorithm, by incorporating a two-part mixture model consisting of (i) a negative binomial model to account for over-

dispersion and (ii) a logistic regression model to account for excessive zero counts. Extensive simulation studies are 

conducted which indicate that ZINB demonstrates better performance as compared to several state-of-the-art approaches, 

as measured by the area under the curve (AUC). Application to two real datasets indicate that the proposed method is 

capable of detecting biologically meaningful taxa, consistent with previous studies.  

Availability: The software implementation of ZINB is available at: http://www.ssg.uab.edu/bhglm/. 

Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online. 
 
Keywords: Differential Abundance Testing, EM Algorithm, Human Microbiome, Metagenomics, OTU, Zero-inflated 
Negative Binomial. 
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1. Introduction 

The advent of next-generation sequencing (NGS) 

technology enables the generation of large volume of 

metagenomic sequencing data (Gilbert, Meyer, & Bailey, 

2011). This opens a new era of genomics study to explore 

microbial communities sampled directly from environments 

without isolation and cultivation (Cho & Blaser, 2012; 

Hugenholtz, 2002; Wooley & Ye, 2009). One of the 

environment is human or mammalian body which harbors a 

dense microbial population across different body sites, 

containing taxa across the tree of life including bacteria, viruses, 

micro-eukaryotes, and archaea (Dethlefsen, McFall-Ngai, & 

Relman, 2007; Whitman, Coleman, & Wiebe, 1998). The 

combination of microbiota, their genomes (metagenome), and 

the host environment forms human or mammalian microbiome 

(Cho & Blaser, 2012). An important research interest in human 

microbiome study is to assess whether and how two or more 

microbiome communities differ from each other. Many factors 

can influence the human microbiome composition (Turnbaugh 

et al., 2007). These factors include the host genotype (Spor, 
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Koren, & Ley, 2011), host physiological status such as aging 

(Biagi et al., 2010), host pathophysiological status (Turnbaugh 

et al., 2009), host lifestyle such as dietary habit (De Filippo et 

al., 2010; Wu et al., 2011), and host environment (Dominguez-

Bello et al., 2010). Different studies have investigated the 

association between the human microbiome and human 

diseases such as obesity (Turnbaugh et al., 2006), diabetes 

(Samuel & Gordon, 2006), inflammatory bowel disease (IBD) 

(Frank et al., 2007), and cancers (Holmes, Li, Athanasiou, 

Ashrafian, & Nicholson, 2011). The findings from these 

studies demonstrated that the human microbiome has 

extraordinary potential implications in new therapeutic targets 

or biomarkers for disease prevention and early diagnosis 

(Collison et al., 2012; Knights, Parfrey, Zaneveld, Lozupone, 

& Knight, 2011; Segata et al., 2011; Virgin & Todd, 2011).  

16S ribosomal RNA (rRNA) gene targeted amplicon 

sequencing is a commonly used approach to determine the 

taxonomic composition and species diversity of the bacterial 

community (Matsen, Kodner, & Armbrust, 2010). 

Hypervariable regions within the gene are amplified and 

sequenced, and sequence reads are clustered into operational 

taxonomic units (OTUs) based on sequence similarity (Ghodsi, 

Liu, & Pop, 2011). Representative sequences from each cluster 

are then classified taxonomically by alignment against a 

database of previously characterized 16S ribosomal DNA 

(rDNA) reference sequences. The resulting OTU counts are 

then used to determine whether and how the abundance of 

microbiome is correlated with some characteristics of the 

samples, such as health/disease status, smoking status, or 

dietary habit. 

However, the OTU/taxa data are high-dimensional with 

added complexity leading to several statistical challenges. The 

first challenge of microbiome data is how to properly account 

for variability induced by differences in sequencing depth 

across samples. This is due to our inability to accurately specify 

the exact number of sequences to be measured on a sample 

using currently available technology. Although the total 

number of sequences for a given sample is not associated with 

any biological feature of the sample, it affects the OTU counts, 

and hence, should be accounted for in downstream 

bioinformatic and statistical analysis. A common approach to 

account for this variation in the total number of sequences is 

the total-sum scaling (TSS) normalization, i.e. conversion of 

the sequence counts to relative abundance (i.e., taxon 

counts/total counts) within a particular sample (Wagner, 

Robertson, & Harris, 2011). However, using total counts as the 

normalization/scaling factor may be problematic and may lead 

to biases in differential abundance estimates (Knights et al., 

2011; Kostic et al., 2012; Paulson, Stine, Bravo, & Pop, 2013). 

To adjust for differential sequencing depths, different 

approaches such as cumulative sum scaling (CSS) (Paulson et 

al., 2013), trimmed mean of M-values (TMM) (Robinson & 

Oshlack, 2010), and relative log expression (RLE) (Anders & 

Huber, 2010), have been proposed in the literature. 

Furthermore, due to the association between detected number 

of features (OTUs) and the depth of coverage in different 

samples, only a few OTUs are shared in various samples, 

whereas the rest are only present in a small proportion of 

samples, resulting in excess of zero counts in the OTUs count 

matrix (Paulson et al., 2013; Peng, Li, & Liu, 2015). 

Second, OTU counts are over-dispersed, meaning the 

variance of the counts varies with the value of the mean. For 

such overdispersed count data, standard methods such as 

Poisson regression can result in high false positives (Peng et al., 

2015; White, Nagarajan, & Pop, 2009). The overdispersed data 

have been widely studied in differential expression analysis in 

microarray and high-throughput sequencing (serial analysis of 

gene expression (SAGE) (Velculescu, Zhang, Vogelstein, & 

Kinzler, 1995) and RNA-seq) (McMurdie & Holmes, 2014). 

Differential abundance analysis in microbiome is a direct 

analogy to differential expression analysis. Many analytical 

tools (edgeR and DESeq) developed for differential expression 

analysis of RNA-Seq data can be adapted to differential 

abundance analysis of OTUs (Anders & Huber, 2010; 

Robinson, McCarthy, & Smyth, 2010). For example, White et 

al. (2009) extended the methods in differential expression 

analysis to microbiome studies by converting the raw 

abundances to proportions, which represent the relative 

contribution of each feature for each individual. This method 

was implemented in the software Metastats. However, 

microbiome data have the distinct characteristic of zero-

inflation, which is notably less severe in RNA-seq data. To this 

end, various zero-inflated models have been proposed to 

correct for sparse counts in microbiome measurements. 

Paulson et al. (2013) proposed a zero-inflated Gaussian 

mixture model for modeling the CSS-normalized log-

transformed count data using an Expectation Maximization 

(EM) algorithm, implemented in the Bioconductor package 

metagenomeSeq. Sohn et al. (2015) implemented a ratio 

approach for identifying differential abundance (RAIDA) by 

utilizing the ratio between features in a modified zero-inflated 

lognormal model. Peng et al. (2015) proposed a zero-inflated 

beta regression (ZIBSeq) approach for modeling the TSS-

normalized relative abundance data. All these zero-inflated 

methods are designed to analyze microbiome data after a 

suitable normalization and/or transformation. However, 

differential abundance estimates based on these methods may 

not be interpretable on the original scale, leading to challenges 

in future prediction tasks and replication studies.  

To address the above limitations, we propose a Zero-inflated 

Negative Binomial (ZINB) mixture model, which directly 

models the raw OTU counts. We implemented our model in R 

package BhGLM by utilizing an EM algorithm incorporating a 

two-part mixture model consisting of (i) negative binomial 

model to account for over-dispersion and (ii) a logistic 

regression model to account for zero-inflation. In our 

simulations, we show that ZINB outperforms DESeq, edgeR, 

and metagenomeSeq in various sparse scenarios in terms of 

Area under the Curve (AUC) estimates. Application to two real 

microbiome data sets reveal biologically significant taxa, 

which are consistent with previous studies. The software 

implementation of ZINB is freely available at: 

http://www.ssg.uab.edu/bhglm/. 

2. Methods 

Assume that there are n samples and m features.  In 16S 

rRNA microbiome data, the features refer to OTUs, species, or 

genus, etc. Let Cij be the observed count for i-th sample and j-

th feature, and Ti be the total read for i-th sample (also referred 

to as depths of coverage or library size) or a linear scaling 

factor that accounts for its library size. Let Xi be a factor 

indicating host health/disease status, physiological status such 

as aging, or lifestyle such as dietary habit, etc. In differential 

abundance analysis, the goal is to determine differentially 

abundant microbial features between groups defined by the
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host factor. We directly model the raw count data with the zero-

inflated negative binomial model. To adjust for differential 

sequencing depth, the natural logarithm of total counts (per 

sample) are included as offset in the negative binomial model. 

This allows us to handle the raw data matrix without 

normalization, leading to interpretable differential abundance 

estimates. In the following subsection, we describe our model 

and algorithm. 

2.1. Zero-inflated Negative Binomial (ZINB) Model 
ZINB models assume that observed zero counts may come 

from either a degenerate distribution having the point mass at 

zero or a negative binomial distribution and observed non-zero 

counts come exclusively from the negative binomial 

distribution. Therefore, the count response for feature j, i.e., yi 

= Cij, follows the mixture distribution: 

 

(1) 

where  and  are the mean and the shape parameter of the 

negative binomial distribution , respectively, 

and pi are the mixture probability parameters. The mean 

parameters  are related to the variables Xi (including the 

intercept) via the link function logarithm:   

  (2) 

where  is the offset, which corrects for the variation of 

the library size. The mixture probability parameters are 

modeled by the logistic regression: 

  (3) 

where Zi includes variables that are potentially associated with 

the zero state. We can include only intercept in Zi (as in the 

simulation study and real data analysis). However, our method 

can be applied to general cases.  

The log-likelihood function for the parameters (β, θ) and γ 

is given by 

      

(4) 

The first term in the log-likelihood includes both (β, θ) and γ 

and thus complicates the maximization of the log-likelihood. 

In principle, this likelihood can be optimized directly by the 

Newton-Raphson algorithm (as implemented by the zeroinfl 

function in the R package pscl). However, the Newton-

Raphson algorithm for fitting this model is known to be 

unstable and have severe non-convergence issues in small 

samples (Mallick & Tiwari, 2016). We thus propose an EM 

algorithm, which is stable and efficient, leading to accurate 

estimation and inference. 

2.2. EM algorithm for fitting the ZINB model 

The EM algorithm introduces a vector of latent indictor 

variables  to distinguish the zero state from the 

negative binomial state, where ξi = 1 when yi is from the zero 

state, and ξi = 0 when yi is from the negative binomial state. 

With the indicator variables, the ZINB model can be expressed 

as 

, and 

 (5) 

The log-likelihood with the complete data (y, ξ) is given by 

 

(6) 

The EM algorithm replaces the indictor variables {ξ i} by 

their conditional expectations { } (E-step), and then updates 

the coefficients β and γ and the shape parameter  by 

maximizing  (M-step). When the EM algorithm 

converges, we obtain the estimate  that maximizes the 

log-likelihood . In the E-step, we calculate the 

conditional expectations of the indictor variables {ξi}. The 

conditional expectation of ξi can be easily calculated as: 

  

(7) 

If , we have , and thus 

.  If , we have 

. 

In the M-step, we update the parameters  by 

maximizing . The coefficients β and γ can be 

separately updated, because γ is only involved in the first term 

of the log-likelihood, , and β and θ are 

only involved in the second term

. The first term is the log-likelihood for an unweighted 

binomial regression of  on S, and the second term is the log-

likelihood for a weighted negative binomial regression of y on 

X with the weights ( ). The parameters β and θ can be 

updated by fitting the weighted negative binomial regression, 

and γ can be updated by fitting the unweighted binomial 

regression.  

At convergence of the algorithm, we summarize the 

inferences using the latest estimate  and its covariance

, which can be obtained from the final weighted 

negative binomial model. Thus, we can get the maximum 

likelihood estimates of the coefficients βj, which stands for the 

parameter coefficient for jth predictor, and their confidence 

intervals, and test the hypothesis H0: βj = 0 by using the statistic 
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Uj = , which approximately follow the 

standard normal distribution. 

2.3. IWLS algorithm for fitting the negative binomial model 

The above EM algorithm needs fitting a weighted negative 

binomial model. We extend the IWLS (Iterative Weighted 

Least Square) algorithm for generalized linear models to fit the 

weighted negative binomial model. Our algorithm is based on 

the well-known fact that given the shape parameter  the 

negative binomial density has the exponential form: 

  (8) 

where , , , and 

. Therefore, 

the negative binomial model is a special case of generalized 

linear models (GLMs) for any fixed .  

The IWLS algorithm for fitting the negative binomial model 

proceeds as follows. Given the shape parameter θ, the estimate 

of  can be obtained by fitting the weighted normal linear 

model: 

  (9) 

where . The pseudo-response  and 

pseudo-weights wi are calculated by  

, and  (10) 

where , , 

, 

, and  and  are the 

current estimates of  and , respectively. Conditional on β, 

the shape parameter θ can be updated by maximizing the NB 

likelihood using the standard Newton-Raphson algorithm. 

3. Results 

3.1. Simulation Studies 

We performed extensive simulations to benchmark our 

method as compared to several state-of-the art approaches 

including DESeq, edgeR, and metagenomeSeq. To simulate 

count data for each feature, we generated OTU counts, cij, from 

the zero-inflated negative binomial distribution defined in (1). 

The ranges of the parameters in the simulation studies are 

described below. 

We simulated OTU-level count data with 1000 features for 

n samples in each of two groups. The sample size n in each 

group was set to be 50, 100, and 150. The effects of the first 50 

features were set to be non-zero, and the others had zero effects. 

In this setting, the parameter Ti denotes the scaling factor for 

sample i. We randomly set the offset log(Ti) from the range 

[0.1, 3.5], the coefficient  from three values (0.5, 1.0, 1.5), 

and the shape parameter  from the range [0.1, 8].  To simulate 

excess amount of zeros for each feature, we randomly 

generated from a Bernoulli trial with a preset proportion of 

zeros. We tested five proportions of zeros by varying pi = (0.1, 

0.2, 0.3, 0.4, 0.5). We set these ranges of the parameters similar 

to those in Sohn et al. (2015). The ranges of all the parameters 

used in the simulation are summarized in Table 1. 
 

Table 1 - Summary of Parameter Ranges in Simulation 
Studies 

Parameter Ranges 

Logarithm of Scaling 

Factor log(Ti) 

Unifrom [0.1, 3.5] 

Shape Parameter  Uniform [0.1, 8] 

Coefficient Estimate    (0.5, 1.0, 1.5) 

Proportion pi (0.1, 0.2, 0.3, 0.4, 0.5) 
 

We carried out differential abundance analysis for each 

simulated feature by using the following methods: 

1. edgeR – exactTest - an exact binomial test with negative 

binomial model preceded by TMM normalization 

(Robinson et al., 2010).  

2. DESeq – nbinomTest – a negative binomial conditioned 

test similar to edgeR but preceding RLE normalization 

(Anders & Huber, 2010)..  

3. metagenomeSeq – fitZig and fitFeatureModel. An 

Expectation-Maximization estimate of the posterior 

probabilities of differential abundance based on a zero 

inflated Gaussian model and zero-inflated log-normal 

mixture model respectively preceding a CSS 

normalization and log-transformation (Paulson et al., 

2013). 

4. BhGLM – Zero-inflated Negative Binomial model using 

Expectation-Maximization for each feature without any 

normalization.  

For each combination of parameters, the procedure was 

repeated 100 times. All tests were corrected for multiple testing 

using Benjamini-Hochberg method to control the False 

Discovery Rate at the alpha level of 0.05. AUC, power, and 

false positive rate were calculated to compare the performance 

of each method. The simulations and real data analyses rely on 

the following R packages: BhGLM, DESeq, edgeR, foreach, 

ggplot2, metagenomSeq, phyloseq, reshape2, and ROCR. The 

reproducible simulation code in R is available upon request 

from the first authors. 

Curves comparing AUC, power, and type I error rates are 

shown in Figures 1-3 to illustrate the performance of BhGLM-

ZINB, DESeq, edgeR, and metagenomeSeq (fitZig and 

fitFeatureModel) on synthetic data with different proportions 

of zeros in detecting significant differentially abundant features 

for three different sample sizes n = 100, 200, and 300 

respectively. Corresponding AUC, power, and type I error 

quantities are also listed in Tables A.1-A.3 (see Appendix). 
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Fig. 1 - Comparison of AUC for Different Methods with 

Different Zero Proportions and Sample Sizes 

 

Fig. 2 - Comparison of Power for Different Methods with 

Different Zero Proportions and Sample Sizes 

 

Fig. 3 - Comparison of Type I Error Rates for Different 

Methods with Different Zero Proportions and Sample 

Sizes 

 

As shown in Figures 1-2 and Tables A.1-A.2, zero-inflated 

methods (BhGLM-ZINB, and metagenomeSeq-fitZig) 

performed similarly on simulated zero inflated data with 

respect to AUC. When the sample size is low (n=100) and the 

zero-inflation is 50%, the AUCs of BhGLM-ZINB and 

metagenomeSeq-fitZig are 0.862 and 0.858, respectively. With 

the same sample size but 10% zero-inflation, the AUCs of 

BhGLM-ZINB, and metagenomeSeq-fitZig were 0.921 and 

0.910, respectively. With respect to empirical power, 

metagenomeSeq-fitZig performs slightly well than BhGLM-

ZINB for ≥30% zero-inflation, while BhGLM-ZINB performs 

slightly better than metagenomeSeq-fitZig when the zero-

inflation is 10%. On the other hand, other three methods, 

DESeq, edgeR, and metagenomeSeq-fitFeatureModel, have 

much lower power regardless of the sparsity level. As the 

proportion of zeroes increases, the empirical power of these 

methods worsens considerably. In terms of Type-I error rates, 

BhGLM-ZINB performs consistently better than 

metagenomeSeq-fitFeatureModel across all zero proportions. 

When the amount of zero-inflation is 50% and n = 100, 

BhGLM-ZINB controls the type I error rate at 0.026, while 

metagenomeSeq-fitFeatureModel and edgeR both have a much 

higher type I error rate (0.041 and 0.040 respectively). In all 

scenarios, the type I error rates are higher for DESeq, edgeR, 

and metagenomeSeq-fitFeatureModel, whereas for the 

proposed method, it is well-controlled, always lower than 0.03. 

In summary, our simulation indicates that the proposed ZINB 

method is consistently high in power along with well-

controlled type I error.  

3.2. Real Data Analysis 

3.2.1. Lung Microbiome Data 

We applied our method to a lung microbiome data from 

Charlson et al. (2011). The data was sampled in the respiratory 

flora from six healthy individuals. Among them, three 

individuals were smokers and the other three were non-

smokers. The two-bronchoscope procedure was used to sample 

the respiratory tract, followed by a serial bronchoalveolar 

lavage and lower-airway protected brushes. A more detailed 

description of the lung microbiome samples, collection, and 

protocols is available in Charlson et al. (2011). The processed 

OTU level data was acquired directly from the R package 

metagenomeSeq. After the rare features were trimmed, we only 

include 259 features in our analysis. Differential abundance 

analysis to determine the associations between the remaining 

features with smoking status of 66 samples was carried out.  

Among them, we have listed the top ten significant taxa in 

Figure 4. Some of the features are consistent with the 

significant taxa selected by the method metagenomeSeq-fitZig. 

The first three taxa are Neisseria polysaccharea, Neisseria 

meningitides, and Neisseria elongate. Neisseria meningitides 

has been reported as an uncommon cause of pneumonia 

(Winstead, McKinsey, Tasker, De Groote, & Baddour, 2000). 

On the other hand, an infective endocarditis caused by 

Neisseria elongata has been reported by (Haddow et al., 2003). 

Porphyromonas sp. has been isolated from both Cystic Fibrosis 

lung infections and non-small cell lung cancer patients (Rogers 

et al., 2004; Sato et al., 2015). Prevotella intermedia has also 

been investigated for its synergic effects to induce Severe 

Bacteremic Pneumococcal Pneumonia in mice (Nagaoka et al., 

2014). 
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Fig. 4 - Coefficients and P-values for the Top Significant 

Differentially Abundant Taxa between Smokers and Non-

smokers in Lung Microbiome Data. The left column is 

names of taxa; the right column is p-values. The ranges of 

coefficients are presented in the middle column. 
 

3.2.2. Colorectal Cancer Microbiome Data 

We further applied our method to a colorectal cancer gut 

microbiome data originally published by Kostic et al. (2012). 

They studied a secondary cohort of 95 individuals with both 

tumor and normal tissue acquired. A more detailed description 

about the gut microbiome samples, collection, and protocols is 

available in Kostic et al. (2012). We included 274 features with 

zero proportion not greater than 0.8 for 185 samples in our 

analysis. The differential abundance analysis was to explore 

the association of the features between normal and tumor 

samples.  

The original study investigated the association between 

Fusobacterium and colorectal carcinoma. We have listed the 

coefficient estimates for the significant OTUs by phylum for 

each genus in Figure 5.  The significant differentially abundant 

phylum for tumor samples includes Firmicutes, Proteobacteria, 

Tenericutes, Actinobacteria, Bacteroidetes, and Fusobacteria. 

Consistent with the original study and Wang et al. (2012), 

Fusobacteria in cancer samples are significantly enriched. 

Besides, the changes in Bacteroidetes and Firmicutes phyla are 

similar to the original study. It is presumed in the original study 

that Fusobacterium species contribute to the evolvement of 

tumor microenvironment, leading to an altered microbiota in 

accordance with the ‘alpha-bug’ hypothesis introduced by 

Sears and Pardoll (2011). 12 of the Fusobacterium species are 

differentially abundant between tumor and normal samples and 

four of them are enriched in tumor samples, both consistent 

with Kostic et al. (2012).  

We also include the coefficients and p-values of top 

significant differentially abundant species in Figure 6. 

Bacteroides uniformis was reported as an enriched OTU-

related species in healthy volunteers by Wang et al. (2012). 

Furthermore, based on the genera of the significant species, 

genera Lactococcus, Bacteroides, Fusobacterium, Prevotella, 

and Streptococcus exhibited more enriched in cancerous 

tissues than normal tissues, which is consistent with Gao et al. 

(2015). It is worth noting that two important species among the 

significant species in Figure 6 have been reported as antitumor 

bacteria. Streptococcus thermophiles has been known as an 

effective probiotic in deactivating risk factors of colon cancer 

(Wollowski, I., Rechkemmer, G., & Pool-Zobel, B. L., 2001). 

Ruminococcus bromii was investigated for its ability to 

degradation of resistant starch in the human colon to potentially 

prevent colon cancer (Ze, X., Duncan, S. H., Louis, P., & Flint, 

H. J., 2012). This confirms that ZINB is able to replicate 

findings from previous reports, and can be used as an efficient 

tool for differential abundance analysis in future microbiome 

studies.  
 

 

Fig. 5 - Coefficients Plot for Different Genus by Phylum in 

Colorectal Cancer Microbiome Data 

 

Fig. 6 - Coefficients and P-values for the Top Significant 

Differentially Abundant Species between Normal and 

Tumor Samples in Gut Microbiome Data. The left column 

is names of taxa; the right column is p-values. The ranges of 
coefficients are presented in the middle column. 

4. Discussion 

Existing differential abundance analysis methods in the 

literature can be divided into three main categories: (i) methods 

that address the non-negativity and over-dispersion of the 

microbiome counts (typically based on negative binomial 

distribution) typically preceded by normalization, i.e. DESeq, 

DESeq2, and edgeR (Anders & Huber, 2010; Li, Witten, 

Johnstone, & Tibshirani, 2012; Peng et al., 2015; Robinson et 

al., 2010; White et al., 2009), (ii) methods that rely on some 

transformation of the normalized counts (e.g. metagenomeSeq), 

and (iii) methods that handle zero-inflation by formulating 

some mixture model (e.g. metagenomeSeq, ZIBSeq). While 

most of these methods rely on some normalization scheme such 

as CSS, TMM, or TSS prior to modeling, the proposed method 

bypasses the need of normalization and accounts for sparsity 
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and overdispersion simultaneously by directly modeling the 

raw counts. This makes ZINB a flexible modeling strategy, 

leading to interpretable differential abundance estimates in the 

original measurement scale. We have shown the consistency of 

ZINB on various types of samples in the simulation study as 

well as in two real human microbiome datasets. 

In the lung microbiome data and some other previous 

studies, we have found that a common problem with the 

existing methods is that that they fail to consider clustered 

structure (if any) in the data. For example, lung microbiome 

data has 78 samples taken from six individuals which were 

treated as independent samples in the previous analyses. 

Therefore, a future direction of research is to incorporate 

random effects in the proposed ZINB model that can account 

for clustered structure in the observations. We have optimized 

our simulations to the analysis of differential abundance 

between two conditions of samples such as healthy versus 

diseased in this article. However, our method can be easily 

extended to more than two conditions. Finally, even though we 

have developed our method for microbiome data, ZINB should 

be applicable to other similar types of count data such as RNA-

Seq. This strength significantly broadens the impact of ZINB 

among researchers in the biological community. 
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Аннотация 
Мотивация: Человеческий микробиом играет важную роль в нормальном и патоологическом состоянии 
человека. Состав микробиома человека формируется под влиянием многих факторов, и понимание этих 
факторов имеет решающее значение для установления роли микробиома в нормальном и патологическом 
состоянии, а также для разработки новых диагностических или терапевтических целей на основании 
микробиома. Целевое секвенирование ампликона гена 16S рибосомальной РНК (рРНК) является широко 
используемым подходом для определения таксономического состава бактериального сообщества. 
Операционные таксономические единицы (OTU) группируются в кластеры на основе сгенерированной 
последовательности ридов и используются для определения того, каким образом относительное 
содержание микробиома коррелирует с некоторыми характеристиками испытуемых, такими как 
здоровое/патологическое состояние, курение или пищевые привычки. Тем не менее, данные подсчета OTU не 
только имеют чрезвычайно сильный разброс, но также содержат избыточное количество нулевых 
результатов подсчета из-за недостаточности выборки. Поэтому для последующего статистического 
анализа необходимы эффективные аналитические инструменты, которые могут одновременно учитывать 
избыточную дисперсию и разреженность данных микробиома.  
Результаты: В данной статье предложена отрицательная биномиальная регрессию с нулевым раздувом 
(ZINB) для выявления различий в относительном содержании таксонов между двумя или более популяциями. 
Предлагаемый способ использует алгоритм максимизации ожидания (EM-алгоритм) путем включения 
смешанной модели из двух частей, состоящей из (i) отрицательной биномиальной модели для учета 
избыточной дисперсии и (ii) регрессионной логистической модели для учета избыточного количества 
нулевых результатов подсчета. Проводятся обширные симуляционные исследования, которые показывают, 
что ZINB демонстрирует более высокую эффективность по сравнению с несколькими современными 
подходами на основании измерения площади под кривой (AUC). Применение предлагаемого метода к двум 
реальным наборам данных показывает, что он способен обнаруживать биологически значимые таксоны и 
сопоставим с предыдущими исследованиями.  
Доступность: Программное обеспечение для реализации ZINB доступно на: http://www.ssg.uab.edu/bhglm/. 
Дополнительная информация: Дополнительные данные доступны в Интернете в Журнале 
биоинформатики и геномики. 
 
Ключевые слова: Дифференциальная оценка относительного содержания, ЕМ-алгоритм, микробиом 
человека, метагеномика, OTU, отрицательная биномиальная [регрессия] с нулевым раздувом.  
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