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Abstract
Motivation: In literature, several transformations exists to obtain a new cumulative distribution function (cdf) using

other(s) well-known cdf(s).
Results: In this note we find applications of some new cumulative distribution function transformations to construct a

family of sigmoidal functions based on the Verhulst logistic function.
We prove estimates for the Hausdorff approximation of the shifted Heaviside step function by means of this family. Nu-
merical examples, illustrating our results are given.
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The logistic function belongs to the important class of
smooth sigmoidal functions arising from population and cell
growth models.

1 Introduction
In literature, several transformations exists to obtain a new
cumulative distribution function (cdf) using other(s) well-

known cdf(s) (Aryal & Tsokos, 2009; Aryal, 2013; Gupta, R.
G., Gupta, P. L. & Gupta, R. D., 1998; Khan & King, 2013;
Kumar, Singh, & Singh, 2015a; Kumar, Singh & Singh,
2015b; Kumar, Singh & Singh 2017).

Definition 1 Another popular transformation by using a
(cdf) F(t) is (Kumar, Singh, & Singh, 2015a):

G(t) = —(eF® - 1) (1)

The transformation (1) has great applications in data analysis.

Definition 2 Define the logistic (Verhulst) function f on R
as

f8) = @

Since then the logistic function finds applications in many
scientific fields, including biology, population dynamics,
chemistry, demography, economics, geoscience, mathematical
psychology, probability, financial mathematics, statistics,
insurance mathematics to name a few (Anguelov & Markov,
2016; Lente, 2015; Kyurkchiev & Markov, 2016a; Kyurk-
chiev, 2016a; Costarelli & Spigler, 2013; Kyurkchiev &
Markov, 2014; Kyurkchiev & Markov, 2015; Kyurkchiev &
Markov, 2016b).

Definition 3 The (interval) step function is:

0, if t <t
he, (®) =4 [0,1], if t=t,,
1, if t>to,
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usually known as shifted Heaviside step function.

Definition 4 (Hausdorff, 2005; Sendov, 1990) The
Hausdorff distance (the H-distance) p(f,g) between two
interval functions f, g on 2 € R, is the distance between their
completed graphs F(f) and F(g) considered as closed sub-
sets of 2 x R. More precisely,

,g) = max{ su inf ||A — B||,
p(f.9) =max{ sup _inf |14~ B

su inf ||A — B[}, 3
o nf lA=BI, ()
wherein ||.|| is any norm in R?, e. g. the maximum norm
[1(t, x)|| = max{|t], |x|}; hence the distance between the
points A = (t4,x4), B = (tg,xg) in R? is [[A—B]| =
max (|ty = tgl, X4 — xp).

In this paper we discuss several computational, modelling
and approximation issues related to two familiar classes of
sigmoidal functions-these are the families of transmuted
cumulative distribution functions.

2 Methods
1. Let us consider the following sigmoid

G(t) == (ef® —1) @)

with
1 1 1
G(to) = E' tO = EIHE
2

®)

based on (1) with the Verhulst logistic function f(t).

The one-sided H-distance d = p(hy, G) between the
shifted Heaviside step function k. and the sigmoidal function
G satisfies the relation:

Glto+d) =——(e/&*D-1)=1-d.  (6)

The following theorem gives upper and lower bounds for
d =d(k)

Theorem 2.1 The one-sided H-distance d (k) between the
function h;, and the function G can be expressed in terms of
the rate parameter k for any real k > 2 as follows:

_ 1 In2.5(1+0.254884k) _
T 2.5(1+0.254884k) 2.5(1+0.254884k) |

d; (7

Proof. We define the functions
1
Fi(d) == (/"D ~1) —1+d (8)
G(d) = =3 + (1+ 0.254884k)d. )
From Taylor expansion

1 1
p— (eftbotd) —1)—1+d— (- 5+ (1+0.254884k)d)

= 0(d?)

we see that the function G, (d) approximates F; (d) with d —
0 as 0(d?) (see Figure 1).
In addition G';(d) > 0 and for k = 2

G1(d) <0; Gy(dy) > 0.
This completes the proof of the inequalities (7).
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Fig. 1 - The functions F;(d) and G4(d) for k = 20.

The generated sigmoidal function G(t) for k = 20 is visu-
alized on Figure 2
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Fig. 2 - The H-distance d(k) between the functions h,,

and G for k =20isd = 0.105561; d;, = 0.0655987;
d, = 0.178704.

Some computational examples using relations (7) are pre-
sented in Table 1. The third column of Table 1 contains the
value of d for prescribed values of k computed by solving the
nonlinear equation (6).

Table 1. Bounds for d(k) computed by (6) and (7) for various

rates k

k d; d computed by (6)  d,

30 0.0462014  0.0747728 0.142182
40 0.0357291  0.0627923 0.119042
50 0.0291032  0.0541761 0.102935
100 0.015101 0.0296749 0.0633183
500 0.00311425 0.00617859 0.0179747
1000 0.00156321 0.0048109 0.0100999

Definition 5 Another popular transformation by using a
(cdf) F(t) is (Kumar, Singh & Singh, 2017):
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G1(t) = e' FO, (10)
2. Let us consider the following sigmoid
G1(t) =e' 7O (11)
with
(12)

G1(t)) =5, to = —1In(In2))

based on (10) with the Verhulst logistic function f(t).

The one-sided H-distance dy = p(h;,, G1) between the
shifted Heaviside step function h;, and the sigmoidal function

G1 satisfies the relation:

G1(te +dy) = e TGoran = 1 —d,. (13)

The following theorem gives upper and lower bounds for
dy = dy (k)

Theorem 2.2 The one-sided H-distance d, (k) between
the function h,, and the function G1 can be expressed in
terms of the rate parameter k for any real k > 2 as follows:

INZSUHO34GSTH) _ (14

1
1™ 2.5(1+0.346574k)

d R ——
L ™ 2.5(1+0.346574k)

The proof follows the ideas given in this paper and will be

omitted.
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Fig. 3 - The H-distance d4 (k) between the functions h,,
and G1 for k = 30isd; = 0.0735233.
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Fig. 4 - Comparison between G (red) and G1 (green) for
k = 20.

3 Results
To achieve our goal, we obtain new estimates for the one—

sided H-distance between a shifted Heaviside step function
and its best approximating family of transmuted cumulative
distribution functions—these are the families of functions G (t)
and G1(t) based on the Verhulst logistic function.

Numerical examples, illustrating our results are given.

In some cases the approximation of shifted Heaviside
function by G1(t) is better in comparison to its approximation
by G(t) (see Figure 4).

For other results, see (lliev, Kyurkchiev & Markov, 20173;
Kyurkchiev, 2015; Kyurkchiev & lliev, 2016; Kyurkchiev, V.
& Kyurkchiev, N., 2015; Kyurkchiev & Markov, 2016¢; lliev,

Kyurkchiev & Markov, 2017b; Kyurkchiev, V. & Kyurkchiev

N., 2017; Kyurkchiev, 2016b).

Manipulate [Dynamic@Show[Plot [G[t], {t, -3, 3}, LabelStyle — Directive[Green, Bold],
PlotLabel - 17 (Exp[1] - 1) » (Exp[1/ (1 +Exp[-k«t])] -1)]1,
P, - ¢ ic, {0, 1)}, in - {0, 031, {{k, 1}, 1, 100, Appearance - "Open"},

{{t0, 0}, 0.01, 10, Appearance — "Open"},
Initialization: (G[Z ] :=1/(Exp[1]-1)« (Exp[1/(1+Exp[-k«1])]1-1))]

k————
Exm— Y 3 N 1

5 [[——

s =lpl+] alv] =

Fig. 5 - Software tools in CAS Mathematica.
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We propose a software module within the programming
environment CAS Mathematica for the analysis of the consid-
ered families of transmuted cumulative distribution functions.

The module offers the following possibilities:

- generation of the functions G(t) and G1(t) under user
defined values of the reaction rate k and tg;

- calculation of the H-distance between the Heaviside
function h;, and the sigmoidal functions G (t) and G1(t);

- software tools for animation and visualization.

4 Appendix

Focusing on the shifted logistic function

1
0= owen (15)
and the shifted function
1 f ()
Gr (t) = a(e r —1) (16)
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Fig. 6 - Interpolation of the experimental data by model
(16).

We examine the following experimental data (biomass) for
Xantobacter autotrophycum by the model Gr (t) .

Table 2. The experimental data (biomass) for Xantobacter
autotrophycum and approximation by Gr ('[) for kK =20

and r =0.1

t Biomass Gr (t)

0 0.104 0.0736774
0.065 0.233 0.229003
0.099 0.39 0.372755
0.125 0.507 0.50254
0.145 0618 0.602883
0.188 0.766 0.784021
0.233 .88 0.899886

From Figure 6 it can be seen that the results are satisfacto-
ry. We point out that in similar “exponential” data type the
results are near to Gompertz growth model.

Acknowledgment. The authors would like to thank the
anonymous reviewers for their valuable comments and sug-
gestions to improve the paper quality.
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Annomauusn
Momusayus: B numepamype npedcmasneno HeCKONbKO npeobpazo8aHuti Oasi NOAYYEHUs HOGOU KYMYAAMUBHOU
@yHuryuu pacnpedenenus (cdf) ¢ nomoupio Opyeoti(-ux) uzeecmmuoii(-vix) cdf-
Pesynemamui: B Oannou pabome HAtl0eHO NpUMeHeHUe HEKOMOPLIM HOBbIM NPeodPA308aAHUAM KYMYIAMUGHOU
@yHryuu pacnpedenenus 0 NOCMPOEHUS CeMelCMBa CUSMOUOATbHBIX DYHKYULL HA OCHOBe JI02UCMUYECKOU (DYHK-
yuu Pepxronvcma.
Hocpeocmeom s3moeo cemeticmea mvli 00KA3b18AeM HPEONONONCEHUS OISl XAYCOOPPOBOL ANNPOKCUMAYUY COBUHY-
motl cmynenuamoi @ynkyuu Xesucauoa. Ilpusooamces uuciennvlie npumepsl, WIOCMpupyiowue noay4eHHbvle pe-
3ynbmamal.

Knrouesvie cnosa: Kymynamuenas @ynkyus pacnpedenenus, 102UCMuYeckas QYHKYUs, cO8UHYMAs CIyneHyamas
@ynryua Xesucaiioa, xaucoopghogo paccmosuue, 6ePXHULL U HUNICHULL NpeOebl.



