

1

Article id: jbg.2017.1.3.3

Journal of Bioinformatics and Genomics, 2017, 1-3

doi: 10.18454/jbg.2017.1.3.3

Advance Access Publication Date: 15 May 2017

NOVEL COMPUTATIONAL TOOLS AND DATABASES

CELNETANALYZER: HIGH-PERFORMANCE JAVA PACKAGE FOR THE TOPOLOGICAL ANALYSIS

OF CELLULAR NETWORKS

Funding

This work was supported by the Belarusian Republican Foundation for Fundamental Research [grant number M12-071].

Conflict of Interest
None declared.

Vasily Grinev1*, Dmitry Kushal1, Vitaly Charapovich1
1Department of Genetics, Faculty of Biology, Belarusian State University, Nezavisimosti Avenue-4, 220030, Minsk, Re-

public of Belarus

*To whom correspondence should be addressed.

Associate editor: Giancarlo Castellano

Received on 27 April 2017, revised on 02 May 2017, accepted on 12 May 2017.

Abstract
Summary: A simple-to-use Java-based software package CelNetAnalyzer was developed. CelNetAnalyzer is managed

through a graphical user interface and it returns a comprehensive list of the topological indices including compositional

complexity, degree and neighbourhood, clustering, distance, centrality and heterogeneity indices as well as simple cycles

and Shannon information entropy of undirected networks. Comparative studies have shown that due to parallelization

and use of enhanced and newly developed algorithms, CelNetAnalyzer calculates these parameters significantly faster

than competitors.

Availability and Implementation: CelNetAnalyzer is an open-source project and free distributed for non-commercial

use. Software package, source code, test network and the results of the topological analysis can be downloaded from

website of the Department of Genetics at Belarusian State University (http://bio.bsu.by/genetics/grinev_software.html).

Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online.

Keywords: cellular molecular networks, topological analysis, software.

Contact: grinev_vv@bsu.by

The theory of complex networks is one of the fastest grow-

ing areas of the modern science (Newman, 2010). The pro-

gress made in this field has been widely applied in the analy-

sis of structural organization, functionality and robustness of

various types of networks including engineering, social and

biological networks. Physics, sociology and computer scienc-

es are the disciplines most actively utilizing advances in the

theory of complex networks. It is obvious that in all these

cases, the practical application of theoretical achievements

became possible due to the successful development of appro-

priate software enabling fast and comprehensive analysis of

large networks.

Recent advances in the molecular biology suggested a

network principle of organization as a basis for the robust

functioning of the cell (MacNeil and Walhout, 2011). Appli-

cation of the network analysis for molecular biology purposes

became possible mainly due to the widespread of OMICS-

technologies as well as methods to reverse engineering of

cellular networks. Whereas the methods of cellular networks

reconstruction are developing quite rapidly, the special meth-

ods of structural analysis of such networks are delayed.

Therefore, among various available computer programs we

studied only NetworkAnalyzer (Assenov et al., 2008) is repre-

senting a software tool directed to the analysis of cellular

networks. In PubMed, one of the most frequently used pro-

grams in the study of social networks Pajek package (Batagelj

and Mrvar, 1998) is cited only 24 times of which only two

references are related to the analysis of cellular networks. The

complexity of the software for biological needs, difficulties in

interpretation of topological indices and time-consuming

analysis of large cellular networks are the main possible rea-

sons of limited application of such network packages. To

avoid these limitations, we propose a novel software product

– a Java package CelNetAnalyzer.

One of the key features of the package is highly integrated

and interrelated calculation of network indices. In graph theo-

ry, there exists a set of indices that describe the topology of

the networks. However, only some of them can be interpreted

from a biological point of view. In this context, we carefully

analyzed of the biological relevance of such metrics and se-

V. Grinev et al.

 2

lected only 46 global and local indices. The final list of indi-

ces includes compositional complexity, degree and neigh-

bourhood, clustering, distance, centrality and heterogeneity

indices, simple cycles and Shannon information entropy (see

Supplementary Data for further details). In our software, the

most complex is the algorithm for count of five-membered

cycles which is implemented in three steps (see Supplemen-

tary Data for further explanations). Next on the complexity

are algorithms for calculation of the betweenness centrality

and count of six-membered cycles.

The second key feature of the package is parallel computa-

tion. This feature is one of the main factors of the high per-

formance of our software. Additional feature of the package is

that it is cross-platform. In particular, the package has been

successfully tested in Windows 7 Ultimate, Ubuntu Linux 9.04

and Mac-OS-X-Mavericks 10.9 environment.

The software can work in two dynamically linked modes.

Small networks are handled in the basic mode, which does not

require large amounts of RAM. However, if the number of

shortest paths from one node to another is greater than 2.15 ×

109 then such network is classified as large and it automatically

switches to the processing of the network using enhanced mode

of operation. This mode requires significantly more RAM com-

paring to the basic one. The critical amount of RAM for proper

program functioning can be calculated based on the number and

size of the program-generated arrays (see Supplementary Data

for further details).

Functionality of the CelNetAnalyzer package was tested on

two types of cellular networks. The first one was inferred by

ARACNE2 algorithm (Margolin et al., 2006) from publicly

available microarray data of 106 t(8;21)-positive human acute

myeloid leukemia samples (Supplementary Table 1). This leu-

kemia network contains 9773 nodes and 199974 edges. The

second network was built on the basis of information on pro-

tein-protein and protein-gene interactions in human cells depos-

ited in databases BioGRID v.3.1.91 (Chatr-Aryamontri et al.,

2013) and STRING v.9.0 (Szklarczyk et al., 2011). The result-

ing reference network includes 17342 nodes and 1522080 edg-

es.

CelNetAnalyzer was compared to four other programs:

NetworkAnalyzer v.2.8.3 (Assenov et al., 2008), Pajek v.4.01

(Batagelj and Mrvar, 1998), NetworkX v.1.9.1 (Aric et al.,

2008) and igraph v.0.7.1 (Csardi and Nepusz, 2006). The com-

parison of the network tools was based on three criteria: sim-

plicity of software use, list of cellular network-oriented topolog-

ical indices, and software performance. All basic tests were

conducted with gene regulatory network from leukemia cells on

a desktop computer equipped by Intel® Core™ i5-4670K 3.40

GHz CPU, 8.00 GB RAM and 64-bit operation system Win-

dows 7 Ultimate.

All of the selected programs are free of charge for non-

commercial usage; they are cross-platform and support a wide

range of network formats. However, only first two of the

above-mentioned programs are stand-alone with GUI like

CelNetAnalyzer, whereas the last two are the libraries and their

use requires special programming skills in Python or R respec-

tively.

NetworkX v.1.9.1 and igraph v.0.7.1 has the broadest capa-

bilities for the analysis of networks: lists of indices include 177

and 103 items, respectively. However, only some of these indi-

ces can be interpretable from a biological standpoint. The re-

maining two programs offer a more intuitive for biologists list

of network metrics. During development of CelNetAnalyzer,

we selected only biologically relevant indices. Furthermore,

CelNetAnalyzer was equipped by effective algorithms for cal-

culating the simple cycles in cellular networks and none of the

comparators exhibit such ability for network analysis.

Software performance was evaluated by using two ap-

proaches: 1) the time required for the calculation of a repre-

sentative topological index; 2) the time required for the calcula-

tion of all topological indices. The local topological index be-

tweenness centrality was selected for first approach. All the

compared programs may calculate this index. Moreover, algo-

rithms for calculation of the betweenness centrality are among

the most time-consuming algorithms. The results of this study

show a great performance of the CelNetAnalyzer (Supplemen-

tary Table 2). As for second approach, the closest in design

CelNetAnalyzer and NetworkAnalyzer v.2.8.3 were compared

by this way. CelNetAnalyzer analyzes the test network in 237-

fold faster in none parallel mode and in 828-fold faster in four

threads mode than NetworkAnalyzer v.2.8.3. Herewith it

should be noted that the NetworkAnalyzer does not search for

simple cycles in networks, which takes majority of the compu-

ting time during work of CelNetAnalyzer.

Thus, CelNetAnalyzer package provides a powerful tool for

the topology analysis of large undirected networks. This soft-

ware uses lightweight graphical interface and contains state-of-

the-art algorithms to perform fast calculation of wide range

topological indices directed on structure elucidation of cellular

networks. Simple format of the obtained results of the topologi-

cal analysis (spreadsheet *.txt tab-delimited format) makes the

results easy to subsequent use.

CelNetAnalyzer: high-performance Java package for the topological analysis of cellular networks

 3

Appendix

Supplementary Table 1 – List of the publicly available microarrays deposited in the repository NCBI GEO and used in this study

GEO series GEO samples

GSE13159

GSM330387, GSM330388, GSM330389, GSM330390, GSM330391, GSM330392,

GSM330393, GSM330394, GSM330395, GSM330396, GSM330397, GSM330398,

GSM330399, GSM330400, GSM330401, GSM330402, GSM330403, GSM330404,

GSM330405, GSM330406, GSM330407, GSM330408, GSM330409, GSM330410,

GSM330411, GSM330412, GSM330413, GSM330414, GSM330415, GSM330416,

GSM330417, GSM330418, GSM330419, GSM330420, GSM330421, GSM330422,

GSM330423, GSM330424, GSM330425, GSM330426

GSE14468

GSM158712, GSM158716, GSM158719, GSM158721, GSM158722, GSM158750,

GSM158752, GSM158781, GSM158799, GSM158810, GSM158814, GSM158861,

GSM158873, GSM158878, GSM158899, GSM158905, GSM158906, GSM158911,

GSM158912, GSM158925, GSM158927, GSM158966, GSM158970, GSM158982,

GSM158984, GSM158985, GSM159005, GSM159032, GSM159037, GSM159050,

GSM159068, GSM159081, GSM159097, GSM159105, GSM159110

GSE17855

GSM445983, GSM445989, GSM445990, GSM446010, GSM446017, GSM446025,

GSM446034, GSM446123, GSM446125, GSM446128, GSM446129, GSM446139,

GSM446146

GSE22056

GSM445922, GSM445935, GSM445938, GSM445943, GSM445950, GSM445959,

GSM445964, GSM445970, GSM445972, GSM446051, GSM446054, GSM446055,

GSM446057, GSM446066, GSM446067

GSE29883 GSM740083, GSM740087, GSM740088

Supplementary Table 2. Features of the CelNetAnalyzer and its key counterparts.

Features

Software

NetworkAna-

lyzer v.2.8.3
Pajek v.4.01

NetworkX

v.1.9.1
igraph v.0.7.1 CelNetAnalyzer

Ease of use

Type of soft-

ware
Stand-alone Stand-alone Library Library Stand-alone

Platform Cross-platform Cross-platform Cross-platform Cross-platform Cross-platform

License GNU LGPL
Free for non-

commercial use
BSD License GNU GPL

Free for non-commercial

use

Requirements

for program-

ming skills

No No Yes Yes No

Graphical user

interface
Yes Yes No No Yes

Structural properties of network

Number of cal-

culated network

parameters

19 46 177 103 46

Simple cycles No No No No Yes

Output format

of network sta-

tistics

.netstats
.vec, .txt (tab

delimited)
.csv, .xml

.txt (space delim-

ited)
.txt (tab delimited)

Performance

Programming

language
Java C Python R Java

Parallelization No No No No Yes

Performance,

min (1)

144. 55 ± 11.04
(2) 3.19 ± 0.01 (3) 31.73 ± 2.31 (3) 0.37 ± 0.002 (3)

0.13 ± 0.002 (0.39 ±

0.005) (2), (4), (5)

V. Grinev et al.

 4

Notes.
(1)Software performance was evaluated in a test on calcula-

tion of the local topological index betweenness centrality.

This index was selected on two criteria: 1) all the compared

programs may calculate this index; 2) algorithms for calcula-

tion of the betweenness centrality are among the most time-

consuming algorithms. The test was carried out on a desktop

computer equipped by Intel® Core™ i5-4670K 3.40 GHz

CPU, 8.00 GB RAM and 64-bit operation system Windows 7

Ultimate. The gene regulatory network from t(8;21)-positive

acute myeloid leukemia was used for that. The table shows

the time (in minutes) required to calculation of the selected

index. Results are expressed as arithmetic mean plus/minus

standard deviation from three independent runs.
(2)A relevant part of source code was used for calculation

of the selected index.
(3)These software tools permit to calculate each topological

index independently.
(4)A set of common auxiliary arrays is generated during

code execution. These arrays are used not only to calculate

the betweenness centrality index but in the calculation of the

most of other indices. During calculation of the betweenness

centrality index, preparation of auxiliary arrays takes 83.8 %

of CPU time and the rest time is spent on the calculation of

the index itself.
(5)CelNetAnalyzer was tested in two modes: with parallel-

ization (four threads) and in none parallel mode (one thread).

The time taken for the calculation of betweenness centrality in

none parallel mode is indicated in parentheses.

Supplementary Text 1. Key limitations in the functioning

of CelNetAnalyzer software.

1) Size of network.

The CelNetAnalyzer can work in two dynamically linked

modes. Small networks are processed in the basic mode. If the

number of shortest paths from one node to another exceeds

2.15 × 109 the network is classified as large and calculation

switches to the enhanced mode of operation. If the number of

shortest paths passing through any node in network outreach-

es 4.61 × 1018, the program will generate an error. The pro-

gram also reports an error if the number of shortest paths from

one node to another exceeds 9.22 × 1018. Another limitation

of the program is the overall number of nodes and edges in

the network, which should not be more than 1 × 109.

2) Allocated RAM.

The critical amount of RAM for proper program function-

ing can be calculated based on the number and size of the

program-generated arrays. A running program creates the

following arrays: 1) adjacency array N × N with elements of

type int to store the shortest distances between nodes, where

N is the number of nodes in the network; 2) array N × N with

elements of type int for small networks or long for large ones,

which stores the number of shortest paths in network and it is

also used in the calculation of the centralities; 3) two addi-

tional arrays N × N with elements of type int for calculation of

cycles with unique order of nodes connections; 4) jagged

array of size N × Nf for storing neighbours for each node,

where Nf is the number of first neighbours of node. Herewith

the size of the element type int is 4 bytes and 8 bytes for type

long. Program generates also other auxiliary arrays, for exam-

ple, a number of one-dimensional arrays 1 × N or array R × N,

where R is a radius of network. However, these arrays are

small in size comparing to arrays N × N.

3) The time required to complete the analysis.

The time required to complete the analysis of network

mostly depends on the complexity of the algorithms. The

most complex is the algorithm for search of five-membered

cycles which is implemented in three steps. The complexity of

the first step is equal to N × <Nf>2 × <Ns> × P2 × P3, where N

is the number of nodes in the network, <Nf> and <Ns> are the

average number of neighbours of the first and second order,

respectively, P2 is the probability that the neighbour node of

the node of second order is node of first order and P3 is the

probability that the neighbour node of the node of second

order is also node of second order. The complexity of second

step is proportional to N × <Nf>3 × <Ns> × P1 × (P2)2, where

P1 is the probability that two neighbours of the target node are

connected. Finally, the complexity of the third step is N ×

<Nf>4 × (P1)3. Next on the complexity, there are algorithms

for calculation of the stress and betweenness centralities N2 ×

<Nf> and search of six-membered cycles N × <(Nf)3>.

4) Number of threads.

One of the key features of the package is parallel computa-

tion. The program should operate stably using at least eight

threads. We have not tested the performance on machines

with more cores or on clusters of computers.

Supplementary Text 2. Description of the network pa-

rameters which are calculated by CelNetAnalyzer.

Compositional complexity.

Compositional complexity Ccom of network can be measure

by following formula:

𝐶𝑐𝑜𝑚 = 𝐶𝑐𝑜𝑚𝑝𝑙(𝑁 + 𝐸),

where Ccompl is a coefficient of network completeness (also

known as connectedness or network density), N and E is

number of nodes and edges in a given network, respectively.

Coefficient of network completeness can be calculated as:

𝐶𝑐𝑜𝑚𝑝𝑙 =
𝐸

𝐸𝑚𝑎𝑥
=

2𝐸

𝑁(𝑁 + 1)
,

where Emax is a number of edges in complete network with

auto-loops.

The Ccompl is a value between 0 and 1. It shows how densely

the network is populated with edges (or how close a given

network is to complete network). A network which contains

no edges and solely isolated nodes has a density of 0. In con-

trast, the density of a complete network is 1.

From two above equations the final formula for compositional

complexity of network is:

𝐶𝑐𝑜𝑚 =
2𝐸(𝑁 + 𝐸)

𝑁(𝑁 + 1)
.

Degree and neighbourhood indices (Assenov et al., 2008;

Bonchev et al., 2005; Diestel, 2005; Maslov, Sneppen, 2002;

Stelzl et al., 2005).

In undirected networks, the node degree ai of a node Ni is the

number of edges linked to Ni:

𝑎𝑖 = ∑ 𝑎𝑖𝑗

𝑁

𝑗=1

.

A self-loop of a node is counted like one edge for the node

degree. The node degree distribution gives the number of

nodes with degree a for a = 0, 1, … .

The sum of all node degrees in a network defines its total

adjacency A:

CelNetAnalyzer: high-performance Java package for the topological analysis of cellular networks

 5

𝐴 = ∑ ∑ 𝑎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

= ∑ 𝑎𝑖

𝑁

𝑖=1

.

The network (global or average) node degree <a> is the average

of the degrees for all nodes in the network:

< 𝑎 >=
∑ 𝑎𝑖

𝑁
𝑖=1

𝑁
=

𝐴

𝑁
 .

The neighbourhood of a given node Ni is the set of its neigh-

bours. The connectivity 𝑐𝑜𝑛𝑛𝑁𝑖
 of a node Ni is the number of

its neighbours (or size of its neighbourhood) and it is equal to

a for nodes without auto-loops or a – 1 for nodes with auto-

loops. The neighbourhood connectivity 𝑁𝐶𝑁𝑖
 of a node Ni is

defined as the average connectivity of all neighbours of Ni:

𝑁𝐶𝑁𝑖
=

∑ 𝑐𝑜𝑛𝑛𝑁𝑓

𝑛
𝑓=1

𝑐𝑜𝑛𝑛𝑁𝑖

 ,

where Nf is first neighbours of node Ni and n = ai (or ai – 1 for

nodes with auto-loops).

The neighbourhood connectivity distribution gives the aver-

age of the neighbourhood connectivities of all nodes N with k

neighbours for k = 0, 1, … .

The topological coefficient 𝑇𝑁𝑖
 of a node Ni with kn neigh-

bours is computed as follows:

𝑇𝑁𝑖
=

𝑎𝑣𝑔(𝐽(𝑁𝑖 , 𝑁𝑗))

𝑘𝑛
 .

Here, J(Ni, Nj) is defined for all nodes Nj that share at least one

neighbour with Ni. The value J(Ni, Nj) is the number of neigh-

bours shared between the nodes Ni and Nj, plus one if there is a

direct link between Ni and Nj.

The topological coefficient is a relative measure for the extent

to which a node shares neighbours with other nodes. Nodes

that have one or no neighbours are assigned a topological

coefficient of 0.

Clustering indices (Assenov et al., 2008; Barabási, Olt-

vai, 2004; Bonchev et al., 2005; Soffer et al., 2005; Watts,

Strogatz, 1998).

For undirected networks, the standard definition of local clus-

tering coefficient 𝐶𝑁𝑖
of a node Ni is:

𝐶𝑁𝑖
=

2𝐸𝑖

𝑎𝑖(𝑎𝑖 − 1)
,

where 𝐸𝑖 is the number of edges between the first neighbours

of node Ni and ai is the degree of this node.

In according to this definition, the clustering coefficient of a

node Ni is the number of triangles that pass through this node,

relative to the maximum number of 3-loops that could pass

through the node. The clustering coefficient of a node is al-

ways a number between 0 and 1. Here, nodes with less than

two neighbours are assumed to have a clustering coefficient

of 0.

The global (network) clustering coefficient <c> is the average

of the clustering coefficients for all nodes in the network:

< 𝑐 >=
∑ 𝐶𝑁𝑖

𝑁
𝑖=1

𝑁
 .

This is sometimes also called as transitivity of network.

The degree-correlation bias insensitive local clustering coeffi-

cient �̃�𝑁𝑖
of a node Ni can be calculated as following:

�̃�𝑁𝑖
=

𝐸𝑖

𝜔𝑖
,

where 𝜔𝑖 is the maximum number of edges that can be drawn

among the ai neighbours of a node Ni, given the degree se-

quence of its neighbourns {a1, …, an}(n = ai).

The global clustering coefficient <�̃�> in that case will be

equal:

< �̃� >=
∑ �̃�𝑁𝑖

𝑁
𝑖=1

𝑁
 .

Distance indices (Assenov et al., 2008; Bonchev et al.,

2005).

A path in the network is a sequence of adjacent edges be-

tween two nodes without traversing any intermediate node

twice. The length of a path is the number of edges forming it.

There may be multiple paths connecting two given nodes. The

shortest path length, also called “distance”, between two

nodes Ni and Nj is denoted by d(Ni, Nj) (or simply dij). The

sum of all shortest paths for a given node is node distance di:

𝑑𝑖 = ∑ 𝑑𝑖𝑗

𝑁

𝑗=1

.

The average of distances <di> for node Ni (also known as the

average shortest path length or the characteristic path length)

gives the expected distance between two connected nodes and

can be calculated as following:

< 𝑑𝑖 >=
𝑑𝑖

𝑁 − 1
 ,

or

< 𝑑𝑖 >=
𝑑𝑖

𝑁

for node with auto-loop.

The distance distribution gives the number of node pairs (Ni,

Nj) with d(Ni, Nj) = k for k = 1, 2, … .

The sum of all shortest paths for a given network is network

distance D:

𝐷 = ∑ ∑ 𝑑𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

= ∑ 𝑑𝑖

𝑁

𝑖=1

.

The average node distance <d> is the relation of network dis-

tance to number of nodes in network:

< 𝑑 >=
𝐷

𝑁
 .

The average network distance <D> (average path length or

average degree of node-node separation) can be calculated by

following formula:

< 𝐷 >=
𝐷

𝑁2 − 𝑁 + 𝑀
 ,

where M is number of auto-loops.

Node eccentricity ei is the maximum distance between node Ni

and any of the remaining network nodes. The largest node eccen-

tricity is termed network diameter NetD. The diameter can also

be described as the largest distance between two nodes. The min-

imal eccentricity is termed network radius NetR. The node(s)

with minimum eccentricity is defined as network centre NetC.

Centrality indices (Assenov et al., 2008; Brandes et al.,

2001; Dong, Horvath, 2007; Freeman, 1977; Freeman,

1978; Newman et al., 2005; del Rio et al., 2009; Yoon et al.,

2006).

The stress centrality Cs(Ni) of a node Ni is the number of

shortest paths passing through Ni:

𝐶𝑠(𝑁𝑖) = ∑ ∑ 𝜎𝑠𝑡(𝑁𝑖)

𝑁𝑡≠𝑁𝑖∈𝑁𝑁𝑠≠𝑁𝑖∈𝑁

 ,

V. Grinev et al.

 6

where Ns and Nt are nodes in the network different from Ni

and σst(Ni) is the number of shortest paths from Ns to Nt that Ni

lies on.

The stress centrality value for each node Ni is normalized by

dividing by the sum of centralities of the all nodes of the net-

work:

𝐶𝑠(𝑁𝑖)𝑛𝑜𝑟𝑚 =
𝐶𝑠(𝑁𝑖)

∑ 𝐶𝑠(𝑁𝑗)𝑁
𝑗=1

,

where N is the total number of nodes in the network.

A node has a high stress if it is traversed by a high number of

shortest paths. This parameter is defined only for networks

without multiple edges. The stress centrality distribution gives

the number of nodes with Cs for different values of Cs.

The betweenness centrality Cb(Ni) of a node Ni is computed as

follows:

𝐶𝑏(𝑁𝑖) = ∑ ∑
𝜎𝑠𝑡(𝑁𝑖)

𝜎𝑠𝑡
𝑁𝑡≠𝑁𝑖∈𝑁𝑁𝑠≠𝑁𝑖∈𝑁

 ,

where σst denotes the number of shortest paths from Ns to Nt.

Betweenness centrality is computed only for networks that do

not contain multiple edges. The betweenness value for each

node Ni is normalized by dividing by the number of node

pairs excluding Ni:

𝐶𝑏(𝑁𝑖)𝑛𝑜𝑟𝑚 =
2𝐶𝑏(𝑁𝑖)

𝑁2 − 3𝑁 + 2
,

where N is the total number of nodes in the connected com-

ponent that Ni belongs to.

Thus, the betweenness centrality of each node is a number

between 0 and 1. The betweenness centrality of a node re-

flects the amount of control that exerts this node over the

interactions of other nodes in the network. This measure fa-

vours nodes that join communities (dense subnetworks), ra-

ther than nodes that lie inside of a community.

The closeness centrality Cc(Ni) of a node Ni is an inverse of

node distance di and is computed as follows:

𝐶𝑐(𝑁𝑖) =
1

∑ 𝑑𝑖𝑗
𝑁
𝑖=1,𝑗=1

 .

Normalized value of closeness centrality for given node Ni is

reciprocal value to characteristic path length and is computed

as follows:

𝐶𝑐(𝑁𝑖)𝑛𝑜𝑟𝑚 =
𝑁 − 1

∑ 𝑑𝑖𝑗
𝑁
𝑖=1,𝑗=1

=
1

< 𝑑𝑖 >
.

The closeness centrality of each node is a number between 0

and 1. The closeness centrality of isolated nodes is equal to 0.

Closeness centrality is a measure of how fast information

spreads from a given node to other reachable nodes in the

network.

The centralization of any network is a measure of how central

its most central node is in relation to how central all the other

nodes are. To calculate of network centralization, the sum of

differences in centrality between the most central node in a

network and all other nodes is calculated in first then this

quantity is divided by the theoretically largest such sum of

differences in any network of the same degree. Thus, every

centrality measure can have its own centralization measure.

Defined formally, if Cx(Ni) is any centrality measure of node

Ni, if Cx(Nn) is the largest such measure in the network, and if

𝑚𝑎𝑥 ∑ 𝐶𝑥(𝑁𝑛) − 𝐶𝑥(𝑁𝑖)

𝑁

𝑖=1

is the largest sum of differences in node centrality Cx for any

network of with the same number of nodes, then the centrali-

zation of the network is:

𝐶𝑐𝑒𝑛 =
∑ 𝐶𝑥(𝑁𝑛) − 𝐶𝑥(𝑁𝑖)𝑁

𝑖=1

𝑚𝑎𝑥 ∑ 𝐶𝑥(𝑁𝑛) − 𝐶𝑥(𝑁𝑖)𝑁
𝑖=1

.

Networks whose topologies resemble a star have a centraliza-

tion close to 1, whereas decentralized networks are character-

ized by having a centralization close to 0.

For normalized values of centralities, network stress centrali-

zation can be calculated as follow:

𝐶𝑠.𝑐𝑒𝑛 =
∑ 𝐶𝑠(𝑁𝑛)𝑛𝑜𝑟𝑚 − 𝐶𝑠(𝑁𝑖)𝑛𝑜𝑟𝑚𝑁

𝑖=1

𝑁 − 1
.

Similarity, network betweenness centralization can be calcu-

lated by following way:

𝐶𝑏.𝑐𝑒𝑛 =
∑ 𝐶𝑏(𝑁𝑛)𝑛𝑜𝑟𝑚 − 𝐶𝑏(𝑁𝑖)𝑛𝑜𝑟𝑚𝑁

𝑖=1

𝑁 − 1
.

As for network closeness centralization, this index can be

calculated by next formula:

𝐶𝑐.𝑐𝑒𝑛 =
∑ 𝐶𝑐(𝑁𝑛)𝑛𝑜𝑟𝑚 − 𝐶𝑐(𝑁𝑖)𝑛𝑜𝑟𝑚𝑁

𝑖=1

(𝑁2 − 3𝑁 + 2)/(2𝑁 − 3)
.

In finally, the combined centrality score Ccs(Ni) for each gene

in the network can be calculated according to the following

formula:

𝐶𝑐𝑠(𝑁𝑖) =

∑
𝐶𝑥(𝑁𝑖) − 𝑚𝑖𝑛𝐶𝑥(𝑁𝑛)

𝑚𝑎𝑥𝐶𝑥(𝑁𝑛) − 𝑚𝑖𝑛𝐶𝑥(𝑁𝑛)
𝑚
𝑖=1

𝑚
 ,

where Cx(Ni) is any centrality measure of node Ni in a given

network, maxCx(Nn) and minCx(Nn) define the maximum and

minimum score obtained for xth-centrality in a given network,

respectively, and m refers to number of combined centralities

(for instance, m = 2 for groups of 2 centralities, m = 3 for

groups of 3 centralities etc.).

Combined centrality score estimates how close to the largest

observed centrality measures are the centralities of the gene

analysed. Thus, the higher the combined score is, the higher

the individual centrality measures are.

Heterogeneity indices (Assenov et al., 2008; Dong,

Horvath, 2007; Hu et al., 2008).

In undirected networks, two nodes are connected if there is a

path of edges between them. Within a network, all nodes that

are pairwise connected form a connected component. The

number of connected components indicates the connectivity

of a network – a lower number of connected components

suggest a stronger connectivity.

The network heterogeneity reflects the tendency of a network

to contain hub nodes. In complex scale-free networks, this

parameter has significant impact on network performance,

such as robustness and attack tolerance. To calculate of net-

work heterogeneity index H, Gini coefficient-based approach

is the most appropriate since it permits to quantify the hetero-

geneity of a network with any degree distribution and quanti-

tatively compares the heterogeneity of networks with different

types of degree distribution. In according to this approach, the

H considers the difference of every two degree values in a

degree sequence. Actually H is equal to on-half of the relative

mean difference, i.e. the arithmetic average of the absolute

values of the differences between all possible pairs of node

degrees:

𝐻 =
∑ ∑ |𝑎𝑖 − 𝑎𝑗

𝑁
𝑗=1 |𝑁

𝑖=1

2𝑁2 < 𝑎 >
.

CelNetAnalyzer: high-performance Java package for the topological analysis of cellular networks

 7

The heterogeneity index of any given network is a number

between 0 and 1 and provides a measure of the average de-

gree inequality in a network: larger index implies higher level

of heterogeneity and vice versa. For any real network H is

always less than 1, and H may approach 1 only for infinite

networks.

Shannon entropy.

In information theory, information entropy is a measure of

unpredictability or uncertainty in a random variable. Infor-

mation entropy is often called the Shannon entropy in honor

of Claude E. Shannon, who in 1948 developed the first math-

ematical theory of entropy (Shannon, 1948). This theory links

the complexity of the system, the amount of information that

is needed to describe such a system, and uncertainty that aris-

es from the transfer of information on this system through a

noisy communication channel. In general, the more complex

the system, the greater the amount of information needed to

describe it, and the more information uncertainty that occurs

when sending a message of such a system.

Consider a system S, described by the random variable X,

which can take on the values x1, x2, …, xn with probabilities

p1, p2, …, pn, respectively. Distribution of the values of such a

variable is subject to a simple probability law:

𝑃𝑋(𝑥𝑖) = 𝑝𝑖 , 𝑝𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛

∑ 𝑝𝑖

𝑛

𝑖=1

= 1

The amount of information IS needed to describe a system S in

which the a priori probability of ith event is equal to 1/n is

given by formula of R. Hartley (Hartley, R. V. L., 1928):

𝐼𝑆 = −𝑙𝑜𝑔2

1

𝑛
= 𝑙𝑜𝑔2𝑛

Shannon entropy HS of such system is equal to the amount of

information. However, Shannon entropy of a system becomes

smaller than the amount of information when the probabilities

of occurrence of ith events are not equal. In this case, Shannon

entropy can be calculated as follow:

𝐻𝑠 = ∑ 𝑝𝑖(𝑥)𝑙𝑜𝑔2 (
1

𝑝𝑖(𝑥)
) =

𝑛

𝑖=1

− ∑ 𝑝𝑖

𝑛

𝑖=1

(𝑥)𝑙𝑜𝑔2𝑝𝑖(𝑥)

When studying cellular networks, probability p of ith event

(e.g., the likelihood that the node Ni will have a degree a) is

unknown, but given only the value xi of random variable X (in

the above example it is value of node degree determined in

the topological analysis). In this case, the computation of the

information entropy is preceded normalization of such data –

the calculation of the theoretical probabilities of single events.

Suppose that 𝑎𝑖
(𝑗)

 is a value of the degree of the ith node in jth

network (i = 1, 2, ..., N; j = 1, 2, ..., m). Then:

𝑝𝑖
(𝑗)

=
𝑎𝑖

(𝑗)

∑ 𝑎𝑖
(𝑗)𝑁

𝑖=1

, 𝑖 = 1, 2, … , 𝑁; 𝑗 = 1, 2, … , 𝑚

At identical (equiprobable) values of degree for each node of

the given network probability p of ith event is:

𝑝𝑖 =
1

𝑁
, 𝑖 = 1, 2, … . , 𝑁

Since different cellular networks may differ in a size of N,

normalized Shannon entropy 𝐻𝑆
𝑛𝑜𝑟𝑚should be used in com-

parative analysis:

𝐻𝑆
𝑛𝑜𝑟𝑚 = −

∑ 𝑝𝑖
(𝑗)

(𝑥)𝑙𝑜𝑔2𝑝𝑖
(𝑗)

(𝑥)𝑁
𝑖=1

𝐼𝑆
, 𝑖 = 1, 2, … . , 𝑁; 𝑗

= 1, 2, … , 𝑚

References

Aric, A.A., Schult, D.A. and Swart, P.J. (2008). Exploring

network structure, dynamics, and function using NetworkX.

In: Varoquaux G., Vaught T., Millman J. (eds). Proceedings

of the 7th Python in Science Conference (SciPy 2008). Pasa-

dena, USA, pp. 11-15.

Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T.

and Albrecht, M. (2008). Computing topological parameters

of biological networks. Bioinformatics, 24, 282-284. doi:

10.1093/bioinformatics/btm554

Barabási, A. L. and Oltvai, Z. N. (2004) Network biology:

understanding the cell's functional organization. Nat. Rev.

Genetic., 5, 101–113.

Batagelj, V. and Mrvar, A. (1998). Pajek – program for

large network analysis. Connections, 21, 47-57.

Bonchev, D. and Buck, G. A. (2005) Quantitative

measures of network complexity. In: Bonchev, D. and Rou-

vray, D. H. (eds). Complexity in chemistry, biology and ecol-

ogy. Springer, New York, pp. 191–235.

Brandes, U. (2001) A faster algorithm for betweenness

centrality. // J. Math. Sociol., 25, 163–177.

Chatr-Aryamontri, A., Breitkreutz, B.J., Heinicke, S.,

Boucher, L., Winter, A., Stark, C., Nixon, J., Ramage, L.,

Kolas, N., O’Donnell, L., Reguly, T., Breitkreutz, A., Sellam,

A., Chen, D., Chang, C., Rust, J., Livstone, M., Oughtred, R.,

Dolinski, K. and Tyers, M. (2013). The BioGRID interaction

database: 2013 update. Nucleic Acids Research, 41, D816-

D823. doi: 10.1093/nar/gks1158

Csardi, G. and Nepusz, T. (2006). The igraph software

package for complex network research. InterJournal, Com-

plex Systems, 1695.

Del Rio, G. et al. (2009) How to identify essential genes

from molecular networks? BMC Sys. Biol., 3, 102.

DOI:10.1186/1752–0509–3–102.

Diestel, R. (2005) Graph theory. Springer-Verlag, Heidel-

berg, ISBN 3–540–26182–6.

Dong, J. and Horvath, S. (2007) Understanding network

concepts in modules. BMC Sys. Biol., 1, 24.

DOI:10.1186/1752–0509–1–24.

Freeman, L. C. (1977) A set of measures of centrality

based on betweenness. Sociometry, 40, 35–41.

Freeman, L. C. (1978) Centrality in social networks. Con-

ceptual clarification. Soc. Networks, 79, 215–239.

Hartley, R. V. L. (1928) Transmission of information. Bell

Sys. Tech. J., 7, 535–563.

Hu, H.–B. and Wang, X.–F. (2008) Unified index to quan-

tifying heterogeneity of complex networks. Physica A, 387,

3769–3780.

MacNeil, L.T. and Walhout, A.J.M. (2011). Gene regula-

tory networks and the role of robustness and stochasticity in

the control of gene expression. Genome Research, 21, 645-

657. doi: 10.1101/gr.097378.109

Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Ne-

menman, I. and Califano, A. (2006). Reverse engineering

cellular networks. Nature Protocols, 1, 663-672. doi:

10.1038/nprot.2006.106

Maslov, S. and Sneppen, K. (2002) Specificity and stabil-

V. Grinev et al.

 8

ity in topology of protein networks. Science, 296, 910–913.

Newman, M. E. J. (2005) A measure of betweenness cen-

trality based on random walks. Soc. Networks, 27, 39–54.

Newman, M.E.J. (2010). Networks. An introduction. Ox-

ford University Press, USA, 784 pp.

Shannon, C. E. (1948) A mathematical theory of commu-

nication. Bell Sys. Tech. J., 27, 379–423, 623–656.

Soffer, S. N. and Vazquez, A. (2005) Network clustering

coefficient without degree-correlation biases. Phys. Rev., 71,

057101–1–057101–4.

Stelzl, U. et al. (2005) A human protein-protein interaction

network: a resource for annotating the proteome. Cell, 122,

957–968.

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic,

M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J.,

Bork, P., Jensen, L.J. and von Mering, C. (2011). The

STRING database in 2011: functional interaction networks of

proteins, globally integrated and scored. Nucleic Acids Re-

search, 39, D561-568. doi: 10.1093/nar/gkq973

Watts, D. J. and Strogatz, S. H. (1998) Collective dynam-

ics of ‘small-world’ networks. Nature, 393, 440–442.

Yoon, J. et al. (2006) An algorithm for modularity analysis

of directed and weighted biological networks based on edge-

betweenness centrality. Bioinformatics, 22, 3106–3108.

9

CELNETANALYZER: ВЫСОКОПРОИЗВОДИТЕЛЬНЫЙ JAVA-ПАКЕТ ДЛЯ

ТОПОЛОГИЧЕСКОГО АНАЛИЗА КЛЕТОЧНЫХ СЕТЕЙ

Финансирование

Эта работа была поддержана Белорусским республиканским фондом фундаментальных исследований [но-
мер гранта M12-071].

Конфликт интересов
Не указан.

Василий Гринев1*, Дмитрий Кушель1, Виталий Черепович1
1 Кафедра генетики биологического факультета Белорусского государственного университета, Минск, Рес-

публика Беларусь

*Корреспондирующий автор

Редактор: Джанкарло Кастельяно

Получена 27 Апреля 2017, доработана 02 Мая 2017, принята 12 Мая 2017.

Аннотация
Разработан простой в использовании Java-пакет CelNetAnalyzer, предназначенный для топологического
анализа клеточных молекулярных сетей. Пакет CelNetAnalyzer управляется через графический интерфейс
пользователя и обеспечивает расчет разнообразных топологических индексов для ненаправленных сетей.
Сравнительные исследования показали, что CelNetAnalyzer рассчитывает эти индексы существенно быст-
рее, чем аналогичные компьютерные программы. Высокая скорость работы программы обеспечивается
благодаря многопоточности проводимых расчетов, а также улучшению существующих и использованию
новых алгоритмов вычислений топологических индексов. Программа CelNetAnalyzer является открытым
проектом и свободно распространяется для некоммерческого использования. Программный пакет, исход-
ный код, тестовые сети и результаты их топологического анализа, а так же руководство пользователя
программы доступны на сайте кафедры генетики Белорусского государственного университета
(http://bio.bsu.by/genetics/grinev_software.html).

Ключевые слова: клеточные молекулярные сети, топологический анализ, программное обеспечение.

