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RESEARCH IN BIOLOGY USING COMPUTATION

AN ALGORITHM FOR DERIVING COMBINATORIAL BIOMARKERS BASED ON RIDGE REGRESSION
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Abstract
Motivation: Combinatorial biomarkers are considered more specific and sensitive than single markers in medical diagnostics and
prediction, yet even detection of such these combinatorial biomarkers requires deep computational analysis. The principles of analytic
combinatorics, linear and kernel ridge regression, and machine learning were applied to derive new combinatorial biomarkers of muscle
damage.
Results: Lactate, phosphate, and middle-chain fatty acids were most often included into biochemical combinatorial markers, while the
following physiological parameters were found to be prevalent: muscle isometric strength, H-reflex length, and contraction tone. Several
strongly correlated combinatorial biomarkers of muscle damage with high prediction accuracy scores were identified. The approach —
based on computational methods, regression algorithms and machine learning — provides a flexible, platform independent and highly
extendable means of discovery and evaluation of combinatorial biomarkers alongside current diagnostic tools.
Availability: The developed algorithm was implemented in Python programming language on a quantitative dataset comprising 23
biochemical parameters, 37 physiological parameters and 3,903 observations. The algorithm and our dataset are available free of
charge on GitHub.
Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online.

Keywords: biomarkers, combinatorics, machine learning, bioinformatics, muscle damage.
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1 Introduction Paralle] measurement of multiple “early” biomarkers would

Strenuous physical activity results in increased plasma lev- certainly increase the diagnostic accuracy. In the context of
els of pro- and anti-inflammatory cytokines, muscle creatine physical exercise, their determination may aid prediction of the
phosphokinase (CPK) and myoglobin (MG) (Kim et al., 2007). extent of muscle damage, and selection of relevant upper limits
Increased muscle CPK activity and MG level in blood after ~ of physical loads. Such combination of markers defines a com-
high-endurance or high-strength exercise is a result of several binatorial biomarker, the identification of which usually in-
factors working in combination and related to muscle damage volves multivariable assays (such as gene expression profiling
(Nie et al., 2011; Morozov et al., 2011; Ohlendieck, 2013; Re- ~ or multiplex assays) (Rakha et al., 2010).

balka and Hawke, 2014; Burch and Glaab, 2016); it is sug- A combinatorial biomarker conveys a specific pattern that
gested that increase in these biomarkers is strongly related to ~ bears much more information than individual markers. The de-
the duration, intensity of exercise and physical fitness. tection of these patterns requires the complex bioinformatics

However, ambiguous expression patterns and measurement analysis that is necessary for all multidimensional data. Cur-

complexity of many biomarkers decrease their prediction rently, it is well recognised that combinatorial biomarkers are
value, leading to overdue diagnosis and poor prognosis. more specific and sensitive than single markers (Goncharov et
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al., 2015; Voitenko et al., 2015). However, the expression of
combinatorial biomarkers as well as their prognostic and pre-
dictive value needs to be well-defined. This is often challeng-
ing as even a search process presents great difficulty when it
deals with a high-dimensional dataset and a huge number of
parameters (Koop, 2005).

The aim of the present study was to implement an algorithm
to search for and evaluate combinatorial biomarkers consisting
of a subset of non-invasive parameters that can be easily and
early measured using a portable analyser, even in “field” con-
ditions. In general, such an algorithm can be applied to search
for hidden associations and correlations between markers that
are not detected manually or by a basic correlation and linear
regression analysis. The main idea behind the algorithm was to
find new combinatorial biomarkers which have a strong asso-
ciation with a known valid biomarker and may be used for pre-
cise diagnosis and prediction. Derivation or even mining of
such biomarker is a complicated process. Furthermore, manual
enumeration of all possible combinations of biomarkers is
counterproductive, but can be effectively done with computa-
tional methods (Kotthoff, 2016).

2 Methods
2.1 Algorithm design

The algorithm includes four major steps. Firstly, the user
imports and pre-processes data to make relevant matrices,
where a row vector represents a parameter and a column vector
stands for an observation. Secondly, all the necessary iterators
are defined. This is an internal step done by the algorithm, but
it may be modified later. It includes four basic iterators for the
following types of combinatorial biomarkers (Table 1): a/b,
axb/c, a/(bxc), axb/(cxd). Additionally, two more iterators are
included for a preliminary screening: a, 1/a. Thirdly, a pool of
asynchronous processes starts. Each process involves: 1) cal-
culating combinatorial biomarkers through element-wise vec-
tor operations (multiplication and division); 2) standardisation
of calculated biomarkers to minimise overfitting and normalise
the scale (Buteneers et al., 2013); 3) fitting a regression model
to input data and calculating a coefficient of determination R?:
currently, ordinary least squares (OLS) linear regression, linear
ridge regression, Theil-Sen robust regression and kernel (non-
linear Gaussian) ridge regression are available; and 4) adding
information about the estimated biomarker to Pandas Data-
Frame if a regression score is higher than a defined threshold
(> 0.8). This part of algorithm is related to a simple single-layer
perceptron.

2.2 Implementation and usage

The algorithm has been implemented in Python program-
ming language (http://www.python.org) and depends heavily
on other third-party scientific packages: NumPy, SciPy, Scikit-
Learn, Pandas and Matplotlib (Pérez et al., 2007; Walt et al.,
2011; Pedregosa et al., 2011; Hunter, 2007; McKinney, 2010).
It is flexible, platform independent, fast, well documented, and
available on GitHub. It is also capable of asynchronous running
on multiple cores of the modern CPUs. We endorse use of the
algorithm with a Jupyter notebook and IPython kernel
(https://jupyter.org) (Pérez et al., 2007). It can be easily im-
ported by running the following command in a Jupyter note-
book: import combiom. To demonstrate the usage of this
algorithm, we provide our notebooks on GitHub
(https://github.com/maximtrp/biomarkers).

2.3 Datasets

Quantitative data obtained in our recent experiment was
used. The overall data set included 23 biochemical parameters,
37 physiological parameters and 3,903 observations. The train-
ing data set consisted of 11 biochemical (g = 11) and 15 phys-
iological (r = 15) parameters that were estimated at various
time points of the experiment (t = 8): 0 (shortly before physi-
cal activity), 1 (one hour after physical activity), 24 (one day
after), 48 (two days after), 72 (3 days), 120 (5 days), 168 (7
days), and 216 (9 days). Thus, we can represent all data in a
matrix form. Let A, = {ay} and B, = {b;;} be a q X t and
r X t rectangular matrices of biochemical and physiological
parameters, correspondingly, where v is an index of a volun-
teer.

Ay Gy e Gqg
ayy Gy - Qg

A, =|%1 32 - A3k | = [ay,]
Ldi1 Qi Qg
by byp 1k
b1 byy ... by

Bv: b31 b32 b3k = [b]k]
by bjy . byl

J J
Each row in a matrix represents a parameter, and each col-

umn represents a time point, where k = 8.

All data were stored in CSV files, with two files for each
volunteer (v = 10): one contained biochemical parameters, and
the other — physiological parameters. These files were itera-
tively read, converted to Numpy arrays and sliced to get 1-hour
measurements. Data on target markers — creatine phosphoki-
nase (CPK), myoglobin (MG), aspartate aminotransferase
(AST), and albumin — were then imported from separate CSV
files. These data were normalized using log-function. Use of
Numpy array objects was found to greatly improve the perfor-
mance of shaping and numerical operations.

2.4 Biomarkers combinations and permutations

Searching through all possible combinations of markers and
fitting regression models to each of them is a “brute-force” or
exhaustive search approach requiring a great amount of time
and machine resources. In the present research, the principles
of combinatorial search and analytic combinatorics as basic
heuristics was applied to the problem, which created matrices
of all productive marker arrangements (Barcucci et al., 1999).
This approach reduced the search space and time needed to it-
erate over all possible combinations (Table 1).

Table 1. Representation of combinatorial subsets of a se-
quence of parameters.

axb a axb
a/b —_ —
c (b Xxc) (cxd)
Permu- Combina- Condi- Conditioned
tations tions tioned ar-  arrangements
range-
ments
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0 1 0 1 2 0o 1 2 0o 1 2 3
0 2 0 1 3 0 1 3 01 2 4
0 3

0 2 3 0 2 3 0 2 1 3
1 0 0o 2 4 0 2 4 0 2 1 4
1 2
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2.5 Regression analysis and model training

Regression analysis is used to explore and understand the
forms of relationships between the independent and dependent
variables. Regression analysis overlaps with the field of ma-
chine learning as a regression model that can be trained and
used to predict the outcome given the input.

In the present research several regression models were im-
plemented. OLS linear regression minimizes the residual sum
of squares between the observed value and the value predicted
by the linear approximation:

min||Xw — y|I3

where X is a data matrix with each x; being a row, w is a
vector of regression coefficients.

The algorithm performs standardisation of input data to nor-
malise row vectors in order to prevent overfitting. Let x; =
[xi1,%i2, -, Xin] be a row vector of n time-dependent observa-
tions of an i complex biomarker. Then, its standard score is de-
fined as:

X —X

Z =

Ridge regression makes use of standard score, solving the
problem of minimizing a penalized residual sum of squares:
min|[Xaw - yII? + allw|?

where X is a data matrix with each x; being a row, w is a
vector of regression coefficients,  is a regularization parame-
ter.

Kernel ridge regression combines ridge regression with a
kernel function (herein, radial basis kernel function):
K(x,y) = e Yle=yl?,

min||y — Kwl|? + aw™Rw

where K is a kernel matrix, R is a regularization matrix
(here, K =R), w is a vector of regression coefficients
(weights), « is a regularization parameter.

Least squares regression models are highly sensitive to out-
liers, which can compromise the regression results and lead to
a wrong prediction. Therefore, we also added a Theil-Sen (ro-
bust) estimator to the algorithm. The algorithm relies on Scikit-
Learn implementation of regression models (Pedregosa et al.,
2011).

2.6 Analysis and visualization

Upon completion of the analysis, the algorithm creates a
Pandas DataFrame object containing the results. A user may
further transform, process, analyse or export these data to mul-
tiple formats with built-in Pandas functions (including Mi-
crosoft Excel XLSX and CSV files) (Figure 1). An interface to
connect a DataFrame object with input data was created. It

includes several functions to predict, plot and export models;
usage example are given in our Jupyter notebook.
2.7 Evaluation method

Each regression model has a scoring function which com-

putes coefficient of determination R? of the prediction:
R? =1 —SSE/SST

SSE = Z(yi — f)?
SST = 2()’1‘ - y)?

where y; are observed values, f; are predicted values, y is a

mean of observed values.
a Derived biomarkers DataFrame object structure (converted to Excel spreadsheet)

Kernel

; Ridge | Theil-
Target marker Ridge Type
Score | Score | Sen

/ AST 0.945 | 0.775 | 0.594 |a/b/c [2,5,10

/ AST 0.938 | 0.774 0.883 |a/b/c [8,1,10

2 |Urea * Chloride / (Phosphate * MCFA) / AST 0.935 | 0.749 | 0.599 |a*b/c/d|2, 6,5, 10
3 |Lactate * Bilirubin / (Phosphate * MCFA) 0.924 | 0.368 |J8M16Na*b/c/d[3,7,5,10
4 Chloride * Glucose / (C *MCFA) C inase / AST 0.923 | 0760 0.937 ja*b/c/d)6, 8,1,10
5 (Creatinine * Glucose / (Phosphate * MCFA) (Creatinekinase / AST 0.923 | 0.777 | 0.472 |a*b/c/d|0, 8, 5,10
6 |Lactate * Bilirubin / (Phosphate * MCFA) |Creatinekinase / Albumin | 0.918 | 0.355 ['3.084 la*b/c/d|3,7, 5,10
7 (Creatinine / (Cholesterol * MCFA) Creatinekinase / AST 0.916 |0.804  0.671 |a/b/c [0,1,10

8 (Glucose * Uric acid / (Lactate * MCFA) C inase / AST 0.915 | 0.588 | 0.469 a*b/c/d8, 9,3,10
9 Uric acid * MCFA / (Urea * Phosphate) Creatinekinase / Albumin | 0.914 | 0.531 [12.689 a*b/c/d|9, 10,2, 5

Biomarker BID

0 \Urea / (Phosphate * MCFA)
1 [Glucose / (Cholesterol * MCFA)

o oo

b Regression plots

—— Kernel Ridge Regression, r* = 0.678

Creatine kinase
Creatine kinase
Creatine kinase

—— Kemel Ridge Regression, r* = 0.889

— Kemel Ridge Regression, r# = 0.799

- - Linear Ridge Regression, r* = 0.831 - - Theil-sen Regression, r* = 0.487 - Linear Ridge Regression, r* = 0.783

04 +
040 00 07 08 o

020 01 02 03 04 05 06 20 025 030 035
Creatinine * Lactate / Phosphate Cholesterol / (Phosphate * Chioride)

025 03 35
Phosphate / Cholesterol

¢ Peak combinatorial biomarkers (a/b/c type)

Kernel | . Theil
Biomarker Ridge g::’grg Sen BID Type

Score Score
1 | Urea / (Phosphate * MCFA) 0.945 | 0.775 | 0.594 | 2,510 | a/b/c
2 | Glucose / (Cholesterol * MCFA) 0.938 | 0.774 | 0.883 | 8,1,10 | a/b/c
3 | Creatinine / (Cholesterol * MCFA) 0.916 | 0.804 | 0.671 | 0,1,10 | a/b/c
4 | Uric acid / (Lactate * MCFA) 0.901 | 0.657 | 0.404 | 9,3,10 | a/b/c
5 | Cholesterol / (Phosphate * Chloride) 0.894 | 0.749 | 1.324 | 1,56 | a/b/c

Fig. 1 - Illustration of output data: a) database structure, b)
regression plots, ¢) a table of 3 combinatorial biomarkers (of
a/b/c group) having the strongest correlations with plasma
levels of creatine phosphokinase and myoglobin.

3 Results
3.1 Derived combinatorial biomarkers

We searched for combinatorial biomarkers having strong
correlations and high regression scores (>0.8) with well-estab-
lished markers of muscle damage (target markers): CPK, MG,
and AST activity. Our dataset contained a total of 3,903 obser-
vations. This was manually reduced to 880 observations of 11
biochemical parameters and 1,200 observations of 15 physio-
logical parameters (Table 2). The data arrays were then sliced
to obtain only 1-hour measurements of parameters (one hour
after physical activity) and fed to iterating functions. The algo-
rithm scanned through a total of 19,558 potential biochemical
markers and 71,960 physiological markers combinations. The
output database contained 393 biochemical markers and 964
physiological markers.
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Table 2. Biochemical and physiological parameters used in an

exhaustive search of combinatorial biomarkers

Biochemical Physiological
parameters parameters
Creatinine Maximum Amplitude of
Cholesterol EMG
Urea Mean Amplitude of EMG
Lactate EMG Frequency
TAG H-reflex Latency
Phosphate H-reflex Amplitude
Chloride H-reflex Length
Bilirubin Right-Thigh Circumference
Glucose Left-Thigh Circumference
Uric acid Relaxation Tone
MCFA Contraction Tone

Isometric Strength

SYS Blood Pres 1

DIA Blood Pres 1

SYS Blood Pres 2

DIA Blood Pres 2
Electromyography, EMG:; triacylglycerols, TAG, middle-chain
fatty acids, MCFA; systolic, SYS; diastolic, DIA.

The results were analysed by several criteria. Firstly, we ex-
plored associations and correlations with target markers. As ex-
pected, most combinatorial biomarkers strongly correlated
with CPK itself and its ratios with albumin, MG and AST
(56.0% of biochemical markers and 60.2% of physiological
markers). AST correlated with 17.2% of biochemical and
10.9% of physiological markers. MG was found to be associ-
ated with 26.9% biochemical and 28.8% physiological markers
(Figure 2).

Further analysis of these sets identified (joint and filtered)
504 biochemical and 1054 physiological biomarkers strongly
associated with three or more target markers (R? = 0.80). Ta-
ble A.1 shows the top 20 combinatorial biomarkers and their
regression scores.

Creatinekinase
Creatinekinase / Albumin
AST

Myoglobin / Albumin
Myoglobin
Creatinekinase / AST

Target markers

Creatinekinase / Myoglobin

0 5 10 15 20 25
Biochemical combinatorial biomarkers, %

Creatinekinase / Albumin - ]

Creatinekinase - |
Myoglobin / Albumin 4T
Myoglobin T
Creatinekinase / AST 4]
AST
Creatinekinase / Myoglobin 45T

0 5 10 15 20
Physiological combinatorial biomarkers, %

Target markers

Fig. 2 - Combinatorial biomarkers obtained in an exhaus-

tive search and grouped by target markers. Most markers

correlate strongly with creatine phosphokinase / albumin and
creatine phosphokinase

Several grouping and aggregating operations were also car-
ried out on the data: single markers were grouped by number
of instances in resulting combinations (Figure 3). Middle-chain
fatty acids (MCFA; 40.0%), lactate (39.2%), glucose (35.3%),
and were most often included into biochemical combinatorial
markers. The following physiological parameters were also
found to be prevalent: muscle isometric strength (33.4%), con-
traction tone (32.5%), and H-reflex length (29.5%).

MCFA
Lactate
TAG
Glucose
Chloride
Phosphate
Creatinine
Urea
Cholesterol
Uric acid
Bilirubin

I T T T T 1

0 100 200 300 400 500

Biochemical
combinatorial biomarkers
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Isometric Strength )
Contrac Tone - ]
H-r Length ]
H-r Latency 4 ]
SYS Blood Pres 1 ]
R-Thigh Circ ]
DIA Blood Pres 1 4 ]
L-Thigh Circ ]
Relax Tone 4
H-r Amplitude
SYS Blood Pres 2 4w
DIA Blood Pres 2 4
Max Amp EMG 4
Mean Amp EMG 4=
EMG Freq A

T T T T T 1
0 200 400 600 800 10001200
Physiological

combinatorial biomarkers

H

Fig. 3 - Aggregation statistics on physiological (a) and bio-
chemical (b) parameters included into combinatorial bi-
omarkers. MCFA and muscle isometric strength had highest
instances.

3.2 Visualization and prediction

Regression models implemented in the algorithm provide
prediction functions. Given the input, they quantitatively pre-
dict plasma levels of muscle CPK and MG. A model can also
be retrained after obtaining new data. Fitting a model to a larger
dataset will greatly improve the accuracy of predictions.

Further information and examples are provided in the Jupy-
ter notebooks.
3.3 Cross-validation

Data were split into training and test sets to see how the
models perform in practice. Due to the small size of our dataset,
we used a leave-1-out cross-validation (CV) method. Mean ab-
solute deviation (MAD), mean absolute percentage error
(MAPE), mean squared error (MSE) and root mean squared er-
ror (RMSE) were employed as statistical metrics to assess the
quality of derived predictors:

n
1
MAD :Eme—fil
i=1

=

—fi| 100
MAPE=Z—|y‘ f‘lx—
= n

1 - ,
MSE =~ x E i = 1)
i=1

n
1
RMSE = X Z(Yi - fi)?
i=1

where y; are observed values, f; are predicted values, n is a
number of observations.

Combinatorial markers with the highest kernel ridge scores
were selected and the technique was applied to assess their pre-
diction accuracy. The results are listed in Table A.2.

Even though our dataset is not large, the found combinato-
rial markers provide acceptable accuracy in making predictions
of muscle damage markers. Moreover, their accuracy can be
increased by feeding new data to the algorithm in order to re-
train the models.

3.4 Performance evaluation

We executed the algorithm on our standalone server (run-
ning ArchLinux ARM): a single-board computer ODROID C2
with Amlogic Cortex-A53 (ARMv8) 2Ghz quad core CPU and
2 GB RAM. It scanned through 91,518 possible combinations
in about 12 minutes. The time complexity of the algorithm is
o(n).

4 Discussion

Combinatorial biomarkers are now considered a first step
towards an effective integrative approach to medical diagnos-
tics, prediction and drug development (Koop, 2005). Such bi-
omarkers typically consist of several single markers and re-
quire a complex integrative analysis. At the present time, com-
putational and data-mining approaches are not widely used in
this field of biomarker research (Kriete, 2006). The discovery,
validation of biomarkers and systemic approaches to biomarker
profiling will greatly benefit from implementing bioinformat-
ics and computational methods to biomarkers research.

In this study, we have applied the analytic combinatorics,
iterative functional programming, exhaustive search, ridge re-
gression analysis and machine learning to discover and analyse
new combinatorial biomarkers strongly associated with muscle
damage markers. Our previously obtained dataset was sliced to
get 1-hour measurements of biochemical and physiological pa-
rameters (after 1 hour of physical activity) that can be estimated
with a portable analyser under field conditions. This data was
passed to the algorithm to search for combinatorial biomarkers.
It scanned through 91,518 possible combinations of single
markers and derived 504 biochemical and 1,054 physiological
combinatorial biomarkers which have strong associations with
multiple markers of muscle damage. The relationships between
these markers were found to be mostly non-linear. Thus, our
algorithm is capable of discovering combinatorial biomarkers
that can be used to make long-term predictions of muscle dam-
age degree.

Due to the small size of our dataset, we cannot predict what
the relationships between derived combinatorial biomarkers
and target markers of muscle damage will be in a large dataset.
It poses a limitation for generalizing our findings. Though it is
still intriguing to see how these combinatorial markers will be-
have in other experiments and datasets.

Our results provide a good basis for follow up studies. These
may include the application of various regression and predic-
tion algorithms to a problem of discovering new biomarkers in
large datasets, which may include numerous hidden associa-
tions between parameters.

The research indicates that using computational methods to
reveal hidden correlations and patterns in high-dimensional
data may facilitate establishing valid combinatorial bi-
omarkers. Their usage is a part of an effective systems biology
approach to disease diagnostics, effect prediction and drug de-
velopment.

In summary, searching for non-invasive biomarkers and
their validating is a major challenge for disease diagnostics,
toxicological and pharmacological studies. In this study, com-
putational methods were applied to iteratively derive and ana-
lyse combinatorial biomarkers, and to find strong correlations
with valid muscle damage markers: CPK, MG and AST and
their ratios. Herein, we propose an algorithm capable of a com-
binatorial search for such biomarkers. The algorithm provided
many strongly correlated combinatorial biomarkers of muscle
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damage with high prediction accuracy scores. Such biomarkers
can be used for further validation and prediction.
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5 Appendix A

Table A.1 — Combinatorial biomarkers which are highly correlated with multiple muscle damage markers: CPK, MG, AST.

Num-
ber of  Mean Mean  Mean
corre-  Kernel ;o o Theil-
Biomarker lated Ridge .
Ridge Sen
target Score Score Score
mark- [2]
ers [1]
Biochemical combinatorial markers
1 1/MCFA 7 0.871 0.308 0.612
2 TAG¥*Phosphate/Lactate/Uric acid 7 0.858 0.424 0.905
3  Phosphate*Chloride/Lactate/Bilirubin 7 0.814 0.276 1.083
4 Lactate*Bilirubin/Creatinine/Urea 7 0.756 0.271 1.609
5 Urea*Chloride/Creatinine/Lactate 7 0.730 0.325 0.713
6  Creatinine*Bilirubin/Lactate/MCFA 7 0.465 0.127 1.025
7  Glucose*Uric acid/Cholesterol/ MCFA 6 0.947 0.169 0.124
8 Creatinine/Chloride/Glucose 6 0.936 0.138 0.945
9  Cholesterol*Phosphate/Glucose 6 0916 0.237 0.223
10 Creatinine*Urea/Cholesterol/ MCFA 6 0.900 0.454 0912
Physiological combinatorial markers
1 R-Thigh Circ*DIA Blood Pres 1/H-r Latency/H-r Length 7 0.945 0.029 0.164
2 L-Thigh Circ*Isometric Strength/Contrac Tone/DIA Blood Pres 1 7 0.924 0.316 0.553
3 Relax Tone/Contrac Tone/DIA Blood Pres 1 7 0918 0.024 0.315
4 H-r Length*Contrac Tone/Relax Tone/SYS Blood Pres 1 7 0916 0.037 0.546
5 H-r Latency*H-r Amplitude/H-r Length 7 0914 0.036 0.696
6 Relax Tone*SYS Blood Pres 1/H-r Length/Contrac Tone 7 0.909 0.025 0.720
7  L-Thigh Circ*DIA Blood Pres 1/H-r Length/DIA Blood Pres 2 7 0.909 0.025 0.762
8 R-Thigh Circ*DIA Blood Pres 2/L-Thigh Circ/Relax Tone 7 0.906 0.076 0.489
9 H-r Latency*H-r Length/R-Thigh Circ/DIA Blood Pres 1 7 0.904 0.023 0.159
10 R-Thigh Circ/Mean Amp EMG/H-r Length 7 0.900 0.053 0.144
[1] and [2] — indicate a group-sorting order. Middle-chain fatty acids, MCFA; triacylglycerols, TAG
Table A.1 — Prediction accuracy estimates for combinatorial biomarkers with highest kernel ridge scores.
Biomarker MAD MAPE RMSE lareet
marker
Biochemical physiological markers
1 TAG*MCFA/Chloride/Uric acid 0.066 3.397 0.093 CPK/MG
2 Uric acid/Lactate/Chloride 0.068 3.451 0.097 CPK/MG
3 Uric acid/Lactate 0.069 3481 0.098 CPK/MG
4  Cholesterol*Glucose/Urea/Chloride 0.076 3.784 0.107 CPK/MG
5  Creatinine*TAG/Urea/Lactate 0.078 3.886 0.110 CPK/MG
6  Urea*Phosphate/Cholesterol/Chloride 0.080 4.027 0.113 CPK /MG
7  Glucose/Cholesterol/MCFA 0.090 4.550 0.128  CPK/AST
8 Chloride*Glucose/Cholesterol/ MCFA 0.096 4.784 0.136 CPK/AST
9  Creatinine*TAG/Phosphate/MCFA 0.095 4.845 0.135 CPK/MG
10  Phosphate*Chloride/Urea/MCFA 0.096 4912 0.135 CPK/MG
Physiological combinatorial markers
1 Contrac Tone*DIA Blood Pres 1/H-r Latency/H-r Ampli- 0.070 3.522 0.099 CPK/MG
tude
2 SYS Blood Pres 2/H-r Amplitude/Contrac Tone 0.079 3.940 0.112 CPK/MG
3 DIA Blood Pres 1*SYS Blood Pres 2/Contrac Tone/Iso- 0.081 4.042 0.115 CPK/MG

metric Strength
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4 R-Thigh Circ*Isometric Strength/Contrac Tone/DIA 0.087 4.338 0.123 CPK/MG
Blood Pres 1

5 Mean Amp EMG/Max Amp EMG 0.089 4.404 0.125 CPK/MG

6 R-Thigh Circ*SYS Blood Pres 1/H-r Latency/H-r Ampli- 0.097 4.883 0.138 CPK/MG
tude

7  H-r Latency*H-r Amplitude/SYS Blood Pres 1 0.097 4.895 0.137 CPK/MG

8 SYS Blood Pres 1/H-r Latency/H-r Amplitude 0.098 4.923 0.139 CPK/MG

9 Relax Tone*DIA Blood Pres 1/EMG Freq/H-r Length 0.098 4.939 0.139 CPK/MG

10 H-r Length*Relax Tone/Contrac Tone/Isometric Strength 0.103 5.197 0.146 CPK/MG
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Annomauyusn
AKmyanshocms u 3a0auu UCCae006anus  KOMOUHAMOPHbIE MapKepbl 0O1adaiom b6oee 8bICOKOU CReyupUUHOCMbIO U 4Y8CMBU-
MENbHOCMbIO 8 MeOUYUHCKOU OUASHOCIUKE U NPOSHO3UPOBAHUL, YeM 00bluHble buomapkepsl. OOHAKO dadice NOUCK MaKux 6uo-
Mapxepos mpebyem mujamenbHo20 MamemMamuieckoeo anaauza. Hamu 6vinu npumenenst ocHO8Hble NPUHYUNBL AHATUMUYECKOT
KOMOUHAMOPUKU, TUHEHOU U A0epHOU 2pebHesoll pecpeccuul U MauUHHO20 00y4eHUs 015 NOTYYeHUs HOBbIX KOMOUHAMOPHLIX OUO-
MapKepos Mblile HblX MpPasM.
Pesynvmamel: ycmanogineno, umo cooepoicanue nakmama, pocghopa u cpeoneyenoyeybix ICUPHbIX KUCTIOM @ Niazme Kposu Hauje
8ce20 ObLIU BKIIOUEHDL 8 COCMAB DUOXUMUYECKUX KOMOUHAMOPHBIX OUOMAPKEPOB8, A MblUeYHAs U30OMEeMPUYeCKds CUd, Onumenb-
Hocme H-omeema u cokpamumensbuwlii mMOHYyc — 6 COCMA8 PU3UON02ULECKUX MapKepos. B pe3ynomame Oviiu svisignen pso Hadedic-
HbIX KOMOUHATNOPHBIX OUOMAPKEPOB, NO36OIAIOWUX NPOSHOZUPOBAINL CHIENEHb MbIUEYHO20 NOBPEJICOe s Yoice Ha paHHell cma-
ouu. Haw nooxo0 — 0cHOBAHHbLI HA BLIYUCTUMENLHBIX MEMOOAX, pecpeccull U MAUUHHOM 0OYUeHUU — A6IAemcs 2UOKUM, NAaAm-
GopmonezasucuMbiM U pacuupaemuim CpeoCmeom HOUCKA U NEPEUYHOU OYEHKU KOMOUHATMOPHBIX OUOMAPKeEPOB HAPAOY € OpyeUMu
00CmynHbIMU cpedcmaamt OUACHOCTNUKU.
Hocmynuocms: ancopumm peanuzosan Ha s3vike npocpammuposanus Python u npomecmuposan na naweii 6aze 0anHwix, 8KII0-
uatoweti 23 buoxumuneckux u 37 gusuonoeuveckux noxazamenei u 3903 nabaoodenus. Anzopumm docmynen becniamuo 6 peno-
sumopuu GitHub.

Knrouegsle cnoea: buomapkepol, KOMOUHAMOPUKA, MawunHoe ooyuenue, OUOUHDOPMAMUKA, MblUeUHble NO8PedlCcOe-
HUSL.



