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Abstract 

Motivation: Combinatorial biomarkers are considered more specific and sensitive than single markers in medical diagnostics and 
prediction, yet even detection of such these combinatorial biomarkers requires deep computational analysis. The principles of analytic 
combinatorics, linear and kernel ridge regression, and machine learning were applied to derive new combinatorial biomarkers of muscle 
damage. 
Results: Lactate, phosphate, and middle-chain fatty acids were most often included into biochemical combinatorial markers, while the 
following physiological parameters were found to be prevalent: muscle isometric strength, H-reflex length, and contraction tone. Several 
strongly correlated combinatorial biomarkers of muscle damage with high prediction accuracy scores were identified. The approach — 
based on computational methods, regression algorithms and machine learning — provides a flexible, platform independent and highly 
extendable means of discovery and evaluation of combinatorial biomarkers alongside current diagnostic tools. 
Availability: The developed algorithm was implemented in Python programming language on a quantitative dataset comprising 23 
biochemical parameters, 37 physiological parameters and 3,903 observations. The algorithm and our dataset are available free of 
charge on GitHub. 
Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online. 
 
Keywords: biomarkers, combinatorics, machine learning, bioinformatics, muscle damage. 
 
Contact: maximtrp@gmail.com 
  

1 Introduction 
Strenuous physical activity results in increased plasma lev-

els of pro- and anti-inflammatory cytokines, muscle creatine 
phosphokinase (CPK) and myoglobin (MG) (Kim et al., 2007). 
Increased muscle CPK activity and MG level in blood after 
high-endurance or high-strength exercise is a result of several 
factors working in combination and related to muscle damage 
(Nie et al., 2011; Morozov et al., 2011; Ohlendieck, 2013; Re-
balka and Hawke, 2014; Burch and Glaab, 2016); it is sug-
gested that increase in these biomarkers is strongly related to 
the duration, intensity of exercise and physical fitness. 

However, ambiguous expression patterns and measurement 
complexity of many biomarkers decrease their prediction 
value, leading to overdue diagnosis and poor prognosis. 

Parallel measurement of multiple “early” biomarkers would 
certainly increase the diagnostic accuracy. In the context of 
physical exercise, their determination may aid prediction of the 
extent of muscle damage, and selection of relevant upper limits 
of physical loads. Such combination of markers defines a com-
binatorial biomarker, the identification of which usually in-
volves multivariable assays (such as gene expression profiling 
or multiplex assays) (Rakha et al., 2010). 

A combinatorial biomarker conveys a specific pattern that 
bears much more information than individual markers. The de-
tection of these patterns requires the complex bioinformatics 
analysis that is necessary for all multidimensional data. Cur-
rently, it is well recognised that combinatorial biomarkers are 
more specific and sensitive than single markers (Goncharov et 
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al., 2015; Voitenko et al., 2015). However, the expression of 
combinatorial biomarkers as well as their prognostic and pre-
dictive value needs to be well-defined. This is often challeng-
ing as even a search process presents great difficulty when it 
deals with a high-dimensional dataset and a huge number of 
parameters (Koop, 2005).  

The aim of the present study was to implement an algorithm 
to search for and evaluate combinatorial biomarkers consisting 
of a subset of non-invasive parameters that can be easily and 
early measured using a portable analyser, even in “field” con-
ditions. In general, such an algorithm can be applied to search 
for hidden associations and correlations between markers that 
are not detected manually or by a basic correlation and linear 
regression analysis. The main idea behind the algorithm was to 
find new combinatorial biomarkers which have a strong asso-
ciation with a known valid biomarker and may be used for pre-
cise diagnosis and prediction. Derivation or even mining of 
such biomarker is a complicated process. Furthermore, manual 
enumeration of all possible combinations of biomarkers is 
counterproductive, but can be effectively done with computa-
tional methods (Kotthoff, 2016). 
2 Methods 
2.1 Algorithm design 

The algorithm includes four major steps. Firstly, the user 
imports and pre-processes data to make relevant matrices, 
where a row vector represents a parameter and a column vector 
stands for an observation. Secondly, all the necessary iterators 
are defined. This is an internal step done by the algorithm, but 
it may be modified later. It includes four basic iterators for the 
following types of combinatorial biomarkers (Table 1): a/b, 
a×b/c, a/(b×c), a×b/(c×d). Additionally, two more iterators are 
included for a preliminary screening: a, 1/a. Thirdly, a pool of 
asynchronous processes starts. Each process involves: 1) cal-
culating combinatorial biomarkers through element-wise vec-
tor operations (multiplication and division); 2) standardisation 
of calculated biomarkers to minimise overfitting and normalise 
the scale (Buteneers et al., 2013); 3) fitting a regression model 
to input data and calculating a coefficient of determination R2: 
currently, ordinary least squares (OLS) linear regression, linear 
ridge regression, Theil-Sen robust regression and kernel (non-
linear Gaussian) ridge regression are available; and 4) adding 
information about the estimated biomarker to Pandas Data-
Frame if a regression score is higher than a defined threshold 
(> 0.8). This part of algorithm is related to a simple single-layer 
perceptron. 
2.2 Implementation and usage 

The algorithm has been implemented in Python program-
ming language (http://www.python.org) and depends heavily 
on other third-party scientific packages: NumPy, SciPy, Scikit-
Learn, Pandas and Matplotlib (Pérez et al., 2007; Walt et al., 
2011; Pedregosa et al., 2011; Hunter, 2007; McKinney, 2010). 
It is flexible, platform independent, fast, well documented, and 
available on GitHub. It is also capable of asynchronous running 
on multiple cores of the modern CPUs. We endorse use of the 
algorithm with a Jupyter notebook and IPython kernel 
(https://jupyter.org) (Pérez et al., 2007). It can be easily im-
ported by running the following command in a Jupyter note-
book: import combiom. To demonstrate the usage of this 
algorithm, we provide our notebooks on GitHub 
(https://github.com/maximtrp/biomarkers). 

 

2.3 Datasets 
Quantitative data obtained in our recent experiment was 

used. The overall data set included 23 biochemical parameters, 
37 physiological parameters and 3,903 observations. The train-
ing data set consisted of 11 biochemical (𝑞 = 11) and 15 phys-
iological (𝑟 = 15) parameters that were estimated at various 
time points of the experiment (𝑡 = 8): 0 (shortly before physi-
cal activity), 1 (one hour after physical activity), 24 (one  day 
after), 48 (two days after), 72 (3 days), 120 (5 days), 168 (7 
days), and 216 (9 days). Thus, we can represent all data in a 
matrix form. Let 𝑨) = {𝑎,-} and 𝑩) = {𝑏1-} be a 𝑞 × 𝑡 and 
𝑟 × 𝑡 rectangular matrices of biochemical and physiological 
parameters, correspondingly, where v is an index of a volun-
teer. 

𝐀𝐯 =

⎣
⎢
⎢
⎢
⎡
𝑎88 𝑎89 … 𝑎8-
𝑎98 𝑎99 … 𝑎9-
𝑎;8 𝑎;9 … 𝑎;-
⋮ ⋮ ⋮
𝑎,8 𝑎,9 … 𝑎,- ⎦

⎥
⎥
⎥
⎤
= [𝑎,-] 

𝐁𝐯 =

⎣
⎢
⎢
⎢
⎡
𝑏88 𝑏89 … 𝑏8-
𝑏98 𝑏99 … 𝑏9-
𝑏;8 𝑏;9 … 𝑏;-
⋮ ⋮ ⋮
𝑏18 𝑏19 … 𝑏1- ⎦

⎥
⎥
⎥
⎤

= [𝑏1-] 

Each	row in a matrix represents a parameter, and each col-
umn represents a time point, where 𝑘 = 8. 

All data were stored in CSV files, with two files for each 
volunteer (v = 10): one contained biochemical parameters, and 
the other – physiological parameters. These files were itera-
tively read, converted to Numpy arrays and sliced to get 1-hour 
measurements. Data on target markers – creatine phosphoki-
nase (CPK), myoglobin (MG), aspartate aminotransferase 
(AST), and albumin – were then imported from separate CSV 
files. These data were normalized using log-function. Use of 
Numpy array objects was found to greatly improve the perfor-
mance of shaping and numerical operations. 
2.4 Biomarkers combinations and permutations 

Searching through all possible combinations of markers and 
fitting regression models to each of them is a “brute-force” or 
exhaustive search approach requiring a great amount of time 
and machine resources. In the present research, the principles 
of combinatorial search and analytic combinatorics as basic 
heuristics was applied to the problem, which created matrices 
of all productive marker arrangements (Barcucci et al., 1999). 
This approach reduced the search space and time needed to it-
erate over all possible combinations (Table 1). 
 

Table 1. Representation of combinatorial subsets of a se-
quence of parameters. 

𝐚/𝐛 
𝐚 × 𝐛
𝐜  

𝐚
(𝐛 × 𝐜) 

𝐚 × 𝐛
(𝐜 × 𝐝) 

Permu-
tations 

Combina-
tions 

Condi-
tioned ar-

range-
ments 

Conditioned 
arrangements 
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𝟎 𝟏
𝟎 𝟐
𝟎 𝟑
… …
𝟏 𝟎
𝟏 𝟐
𝟏 𝟑
… …

 

0 1 2
0 1 3
… … …
0 2 3
0 2 4
… … …
1 2 3
1 2 4
… … …

 

0 1 2
0 1 3
… … …
0 2 3
0 2 4
… … …
1 0 2
1 0 3
… … …
1 2 3
1 2 4
… … …

 

0 1 2 3
0 1 2 4
… … … …
0 2 1 3
0 2 1 4
… … … …
1 2 0 3
1 2 0 4
… … … …
1 2 3 4
1 2 3 5
… … … …

 

 
2.5 Regression analysis and model training 

Regression analysis is used to explore and understand the 
forms of relationships between the independent and dependent 
variables. Regression analysis overlaps with the field of ma-
chine learning as a regression model that can be trained and 
used to predict the outcome given the input. 

In the present research several regression models were im-
plemented. OLS linear regression minimizes the residual sum 
of squares between the observed value and the value predicted 
by the linear approximation: 

min
𝓌
‖X𝓌−𝑦‖[9 

where X is a data matrix with each 𝑥, being a row, 𝓌 is a 
vector of regression coefficients. 

The algorithm performs standardisation of input data to nor-
malise row vectors in order to prevent overfitting. Let 𝑥, =
[𝑥,8, 𝑥,9, … , 𝑥,^] be a row vector of 𝑛 time-dependent observa-
tions of an 𝑖 complex biomarker. Then, its standard score is de-
fined as: 

𝑧 =
𝑥 − �̅�
𝜎  

Ridge regression makes use of standard score, solving the 
problem of minimizing a penalized residual sum of squares: 

min
𝓌
‖X𝓌−𝑦‖[9 + 𝛼‖𝓌‖[9 

where X is a data matrix with each 𝑥, being a row, 𝓌 is a 
vector of regression coefficients, 𝛼 is a regularization parame-
ter. 

Kernel ridge regression combines ridge regression with a 
kernel function (herein, radial basis kernel function): 
𝐾(𝑥, 𝑦) = 𝑒hi‖jhk‖[.  

min
𝓌
‖𝑦 −K𝓌‖[9 + 𝛼𝓌lR𝓌 

where K is a kernel matrix, R is a regularization matrix 
(here, 𝐾 = 𝑅), 𝓌 is a vector of regression coefficients 
(weights), 𝛼 is a regularization parameter. 

Least squares regression models are highly sensitive to out-
liers, which can compromise the regression results and lead to 
a wrong prediction. Therefore, we also added a Theil-Sen (ro-
bust) estimator to the algorithm. The algorithm relies on Scikit-
Learn implementation of regression models (Pedregosa et al., 
2011). 
2.6 Analysis and visualization 

Upon completion of the analysis, the algorithm creates a 
Pandas DataFrame object containing the results. A user may 
further transform, process, analyse or export these data to mul-
tiple formats with built-in Pandas functions (including Mi-
crosoft Excel XLSX and CSV files) (Figure 1). An interface to 
connect a DataFrame object with input data was created. It 

includes several functions to predict, plot and export models; 
usage example are given in our Jupyter notebook. 
2.7 Evaluation method 

Each regression model has a scoring function which com-
putes coefficient of determination 𝑅9 of the prediction: 

𝑅9 = 1 − SSE SST⁄   
SSE =r(𝑦, − 𝑓,)9

,

 

SST =r(𝑦, − 𝑦t)9
,

 

where 𝑦, are observed values, 𝑓, are predicted values, 𝑦t is a 
mean of observed values. 

 
Fig. 1 - Illustration of output data: a) database structure, b) 
regression plots, c) a table of 3 combinatorial biomarkers (of 
a/b/c group) having the strongest correlations with plasma 

levels of creatine phosphokinase and myoglobin. 
 
3 Results 
3.1 Derived combinatorial biomarkers 

We searched for combinatorial biomarkers having strong 
correlations and high regression scores (>0.8) with well-estab-
lished markers of muscle damage (target markers): CPK, MG, 
and AST activity. Our dataset contained a total of 3,903 obser-
vations. This was manually reduced to 880 observations of 11 
biochemical parameters and 1,200 observations of 15 physio-
logical parameters (Table 2). The data arrays were then sliced 
to obtain only 1-hour measurements of parameters (one hour 
after physical activity) and fed to iterating functions. The algo-
rithm scanned through a total of 19,558 potential biochemical 
markers and 71,960 physiological markers combinations. The 
output database contained 393 biochemical markers and 964 
physiological markers. 
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Table 2. Biochemical and physiological parameters used in an 
exhaustive search of combinatorial biomarkers 

Biochemical 
parameters 

Physiological 
parameters 

Creatinine 
Cholesterol 

Urea 
Lactate 
TAG  

Phosphate 
Chloride 
Bilirubin 
Glucose 
Uric acid 
MCFA  

Maximum Amplitude of 
EMG 

Mean Amplitude of EMG 
EMG Frequency 
H-reflex Latency 

H-reflex Amplitude 
H-reflex Length 

Right-Thigh Circumference 
Left-Thigh Circumference 

Relaxation Tone 
Contraction Tone 
Isometric Strength 
SYS Blood Pres 1 
DIA Blood Pres 1 
SYS Blood Pres 2 
DIA Blood Pres 2 

Electromyography, EMG; triacylglycerols, TAG; middle-chain 
fatty acids, MCFA; systolic, SYS; diastolic, DIA. 

 
The results were analysed by several criteria. Firstly, we ex-

plored associations and correlations with target markers. As ex-
pected, most combinatorial biomarkers strongly correlated 
with CPK itself and its ratios with albumin, MG and AST 
(56.0% of biochemical markers and 60.2% of physiological 
markers). AST correlated with 17.2% of biochemical and 
10.9% of physiological markers. MG was found to be associ-
ated with 26.9% biochemical and 28.8% physiological markers 
(Figure 2). 

Further analysis of these sets identified (joint and filtered) 
504 biochemical and 1054 physiological biomarkers strongly 
associated with three or more target markers (𝑅9 ≥ 0.80). Ta-
ble A.1 shows the top 20 combinatorial biomarkers and their 
regression scores.  

 
Fig. 2 - Combinatorial biomarkers obtained in an exhaus-
tive search and grouped by target markers. Most markers 
correlate strongly with creatine phosphokinase / albumin and 

creatine phosphokinase 
 
Several grouping and aggregating operations were also car-

ried out on the data: single markers were grouped by number 
of instances in resulting combinations (Figure 3). Middle-chain 
fatty acids (MCFA; 40.0%), lactate (39.2%), glucose (35.3%), 
and were most often included into biochemical combinatorial 
markers. The following physiological parameters were also 
found to be prevalent: muscle isometric strength (33.4%), con-
traction tone (32.5%), and H-reflex length (29.5%). 
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Fig. 3 - Aggregation statistics on physiological (a) and bio-
chemical (b) parameters included into combinatorial bi-

omarkers. MCFA and muscle isometric strength had highest 
instances. 

3.2 Visualization and prediction 
Regression models implemented in the algorithm provide 

prediction functions. Given the input, they quantitatively pre-
dict plasma levels of muscle CPK and MG. A model can also 
be retrained after obtaining new data. Fitting a model to a larger 
dataset will greatly improve the accuracy of predictions. 

Further information and examples are provided in the Jupy-
ter notebooks. 
3.3 Cross-validation 

Data were split into training and test sets to see how the 
models perform in practice. Due to the small size of our dataset, 
we used a leave-1-out cross-validation (CV) method. Mean ab-
solute deviation (MAD), mean absolute percentage error 
(MAPE), mean squared error (MSE) and root mean squared er-
ror (RMSE) were employed as statistical metrics to assess the 
quality of derived predictors: 

MAD =
1
𝑛 ×

r|𝑦, − 𝑓,|
^

,{8

 

MAPE =r
|𝑦, − 𝑓,|
𝑦,

^

,{8

×
100
𝑛  

𝑀𝑆𝐸 =
1
𝑛 ×

r(𝑦, − 𝑓,)9
^

,{8

 

𝑅𝑀𝑆𝐸 = �
1
𝑛 ×

r(𝑦, − 𝑓,)9
^

,{8

 

where 𝑦, are observed values, 𝑓, are predicted values, n is a 
number of observations. 

Combinatorial markers with the highest kernel ridge scores 
were selected and the technique was applied to assess their pre-
diction accuracy. The results are listed in Table A.2. 

Even though our dataset is not large, the found combinato-
rial markers provide acceptable accuracy in making predictions 
of muscle damage markers. Moreover, their accuracy can be 
increased by feeding new data to the algorithm in order to re-
train the models. 

3.4 Performance evaluation 
We executed the algorithm on our standalone server (run-

ning ArchLinux ARM): a single-board computer ODROID C2 
with Amlogic Cortex-A53 (ARMv8) 2Ghz quad core CPU and 
2 GB RAM. It scanned through 91,518 possible combinations 
in about 12 minutes. The time complexity of the algorithm is 
𝑂(𝑛). 
4 Discussion 

Combinatorial biomarkers are now considered a first step 
towards an effective integrative approach to medical diagnos-
tics, prediction and drug development (Koop, 2005). Such bi-
omarkers typically consist of several single markers and re-
quire a complex integrative analysis. At the present time, com-
putational and data-mining approaches are not widely used in 
this field of biomarker research (Kriete, 2006). The discovery, 
validation of biomarkers and systemic approaches to biomarker 
profiling will greatly benefit from implementing bioinformat-
ics and computational methods to biomarkers research. 

In this study, we have applied the analytic combinatorics, 
iterative functional programming, exhaustive search, ridge re-
gression analysis and machine learning to discover and analyse 
new combinatorial biomarkers strongly associated with muscle 
damage markers. Our previously obtained dataset was sliced to 
get 1-hour measurements of biochemical and physiological pa-
rameters (after 1 hour of physical activity) that can be estimated 
with a portable analyser under field conditions. This data was 
passed to the algorithm to search for combinatorial biomarkers. 
It scanned through 91,518 possible combinations of single 
markers and derived 504 biochemical and 1,054 physiological 
combinatorial biomarkers which have strong associations with 
multiple markers of muscle damage. The relationships between 
these markers were found to be mostly non-linear. Thus, our 
algorithm is capable of discovering combinatorial biomarkers 
that can be used to make long-term predictions of muscle dam-
age degree. 

Due to the small size of our dataset, we cannot predict what 
the relationships between derived combinatorial biomarkers 
and target markers of muscle damage will be in a large dataset. 
It poses a limitation for generalizing our findings. Though it is 
still intriguing to see how these combinatorial markers will be-
have in other experiments and datasets. 

Our results provide a good basis for follow up studies. These 
may include the application of various regression and predic-
tion algorithms to a problem of discovering new biomarkers in 
large datasets, which may include numerous hidden associa-
tions between parameters.  

The research indicates that using computational methods to 
reveal hidden correlations and patterns in high-dimensional 
data may facilitate establishing valid combinatorial bi-
omarkers. Their usage is a part of an effective systems biology 
approach to disease diagnostics, effect prediction and drug de-
velopment. 

In summary, searching for non-invasive biomarkers and 
their validating is a major challenge for disease diagnostics, 
toxicological and pharmacological studies. In this study, com-
putational methods were applied to iteratively derive and ana-
lyse combinatorial biomarkers, and to find strong correlations 
with valid muscle damage markers: CPK, MG and AST and 
their ratios. Herein, we propose an algorithm capable of a com-
binatorial search for such biomarkers. The algorithm provided 
many strongly correlated combinatorial biomarkers of muscle 
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damage with high prediction accuracy scores. Such biomarkers 
can be used for further validation and prediction. 
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5 Appendix A 

Table A.1 –  Combinatorial biomarkers which are highly correlated with multiple muscle damage markers: CPK, MG, AST. 

 Biomarker 

Num-
ber of 
corre-
lated 
target 
mark-
ers [1] 

Mean 
Kernel 
Ridge 
Score 

[2] 

Mean 
Linear 
Ridge 
Score 

Mean 
Theil-
Sen 

Score 

 
Biochemical combinatorial markers 

1 1/MCFA 7 0.871 0.308 0.612 
2 TAG*Phosphate/Lactate/Uric acid 7 0.858 0.424 0.905 
3 Phosphate*Chloride/Lactate/Bilirubin 7 0.814 0.276 1.083 
4 Lactate*Bilirubin/Creatinine/Urea 7 0.756 0.271 1.609 
5 Urea*Chloride/Creatinine/Lactate 7 0.730 0.325 0.713 
6 Creatinine*Bilirubin/Lactate/MCFA 7 0.465 0.127 1.025 
7 Glucose*Uric acid/Cholesterol/MCFA 6 0.947 0.169 0.124 
8 Creatinine/Chloride/Glucose 6 0.936 0.138 0.945 
9 Cholesterol*Phosphate/Glucose 6 0.916 0.237 0.223 
10 Creatinine*Urea/Cholesterol/MCFA 6 0.900 0.454 0.912  

Physiological combinatorial markers 
1 R-Thigh Circ*DIA Blood Pres 1/H-r Latency/H-r Length 7 0.945 0.029 0.164 
2 L-Thigh Circ*Isometric Strength/Contrac Tone/DIA Blood Pres 1 7 0.924 0.316 0.553 
3 Relax Tone/Contrac Tone/DIA Blood Pres 1 7 0.918 0.024 0.315 
4 H-r Length*Contrac Tone/Relax Tone/SYS Blood Pres 1 7 0.916 0.037 0.546 
5 H-r Latency*H-r Amplitude/H-r Length 7 0.914 0.036 0.696 
6 Relax Tone*SYS Blood Pres 1/H-r Length/Contrac Tone 7 0.909 0.025 0.720 
7 L-Thigh Circ*DIA Blood Pres 1/H-r Length/DIA Blood Pres 2 7 0.909 0.025 0.762 
8 R-Thigh Circ*DIA Blood Pres 2/L-Thigh Circ/Relax Tone 7 0.906 0.076 0.489 
9 H-r Latency*H-r Length/R-Thigh Circ/DIA Blood Pres 1 7 0.904 0.023 0.159 
10 R-Thigh Circ/Mean Amp EMG/H-r Length 7 0.900 0.053 0.144 

[1] and [2] — indicate a group-sorting order. Middle-chain fatty acids, MCFA; triacylglycerols, TAG 
 

Table A.1 – Prediction accuracy estimates for combinatorial biomarkers with highest kernel ridge scores.  
Biomarker MAD MAPE RMSE Target 

marker 
  Biochemical physiological markers 
1 TAG*MCFA/Chloride/Uric acid 0.066 3.397 0.093 CPK / MG 
2 Uric acid/Lactate/Chloride 0.068 3.451 0.097 CPK / MG 
3 Uric acid/Lactate 0.069 3.481 0.098 CPK / MG 
4 Cholesterol*Glucose/Urea/Chloride 0.076 3.784 0.107 CPK / MG 
5 Creatinine*TAG/Urea/Lactate 0.078 3.886 0.110 CPK / MG 
6 Urea*Phosphate/Cholesterol/Chloride 0.080 4.027 0.113 CPK / MG 
7 Glucose/Cholesterol/MCFA 0.090 4.550 0.128 CPK / AST 
8 Chloride*Glucose/Cholesterol/MCFA 0.096 4.784 0.136 CPK / AST 
9 Creatinine*TAG/Phosphate/MCFA 0.095 4.845 0.135 CPK / MG 
10 Phosphate*Chloride/Urea/MCFA 0.096 4.912 0.135 CPK / MG 
  Physiological combinatorial markers 
1 Contrac Tone*DIA Blood Pres 1/H-r Latency/H-r Ampli-

tude 
0.070 3.522 0.099 CPK / MG 

2 SYS Blood Pres 2/H-r Amplitude/Contrac Tone 0.079 3.940 0.112 CPK / MG 
3 DIA Blood Pres 1*SYS Blood Pres 2/Contrac Tone/Iso-

metric Strength 
0.081 4.042 0.115 CPK / MG 
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4 R-Thigh Circ*Isometric Strength/Contrac Tone/DIA 
Blood Pres 1 

0.087 4.338 0.123 CPK / MG 

5 Mean Amp EMG/Max Amp EMG 0.089 4.404 0.125 CPK / MG 
6 R-Thigh Circ*SYS Blood Pres 1/H-r Latency/H-r Ampli-

tude 
0.097 4.883 0.138 CPK / MG 

7 H-r Latency*H-r Amplitude/SYS Blood Pres 1 0.097 4.895 0.137 CPK / MG 
8 SYS Blood Pres 1/H-r Latency/H-r Amplitude 0.098 4.923 0.139 CPK / MG 
9 Relax Tone*DIA Blood Pres 1/EMG Freq/H-r Length 0.098 4.939 0.139 CPK / MG 
10 H-r Length*Relax Tone/Contrac Tone/Isometric Strength 0.103 5.197 0.146 CPK / MG 
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Аннотация 

Актуальность и задачи исследования:комбинаторные маркеры обладают более высокой специфичностью и чувстви-
тельностью в медицинской диагностике и прогнозировании, чем обычные биомаркеры. Однако даже поиск таких био-
маркеров требует тщательного математического анализа. Нами были применены основные принципы аналитической 
комбинаторики, линейной и ядерной гребневой регрессии и машинного обучения для получения новых комбинаторных био-
маркеров мышечных травм. 
Результаты: установлено, что содержание лактата, фосфора и среднецепочечных жирных кислот в плазме крови чаще 
всего были включены в состав биохимических комбинаторных биомаркеров, а мышечная изометрическая сила, длитель-
ность Н-ответа и сократительный тонус — в состав физиологических маркеров. В результате были выявлен ряд надеж-
ных комбинаторных биомаркеров, позволяющих прогнозировать степень мышечного повреждения уже на ранней ста-
дии. Наш подход — основанный на вычислительных методах, регрессии и машинном обучении — является гибким, плат-
формонезависимым и расширяемым средством поиска и первичной оценки комбинаторных биомаркеров наряду с другими 
доступными средствами диагностики. 
Доступность: алгоритм реализован на языке программирования Python и протестирован на нашей базе данных, вклю-
чающей 23 биохимических и 37 физиологических показателей и 3903 наблюдения. Алгоритм доступен бесплатно в репо-
зитории GitHub. 
 
Ключевые слова: биомаркеры, комбинаторика, машинное обучение, биоинформатика, мышечные поврежде-
ния. 


