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Abstract 
Antimicrobial peptides (AMPs) are considered as a promising pool of alternative antimicrobial agents in the post-antibiotic

era. Since a number of limitations, especially cytotoxicity, restrict their implementation into clinic, search for novel non-toxic
AMPs is of high relevance. In the present study, we used multiple logistic regression for prediction of both antimicrobial and
hemolytic capacities of peptides. The two constructed models demonstrated acceptable predictive power (at estimated optimal
cut-offs,  accuracy,  sensitivity,  specificity,  F-measure  ≥  0.82,  ROC  AUC  >  0.91).  The  model  for  antimicrobial  activity
prediction was further applied for identification of possible AMPs in large protein sequences. The validation of the method was
performed on precursors of well-known AMPs from different structural classes – human neutrophil peptide 1 (HNP1), LL-37
cathelicidin as well  as of tachyplesin I.  In all cases, the mature AMPs localization was predicted correctly, i.e.  at  the C-
terminus  (HNP1,  LL-37)  or  in  the  middle  of  the  precursor  sequence  (tachyplesin  I).  The  study  provides  the  easy-for-
interpretation method for prediction of antimicrobial and hemolytic peptides and their identification in large proteins.
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Аннотация 
Антимикробные  пептиды  (АМП)  рассматриваются  в  качестве  перспективного  пула  альтернативных

антимикробных агентов в пост-антибиотическую эру. Поскольку ряд ограничений, в особенности цитотоксичность,
лимитирует их имплементацию в клинику, поиск новых нетоксичных АМП имеет высокую актуальность. В настоящем
исследовании  мы  применили  множественную  логистическую  регрессию  для  предсказания  антимикробной  и
гемолитической способности пептидов. Две построенные модели продемонстрировали приемлемую предсказательную
силу (аккуратность,  чувствительность,  специфичность,  точность,  F-мера ≥ 0,82,  ROC AUC > 0,91 при оцененных
оптимальных пороговых уровнях). Модель для предсказания антимикробной активности была далее применена для
обнаружения возможных АМП в  последовательностях  крупных белков.  Валидация метода  была  осуществлена  на
предшественниках известных АМП различных структурных классов – нейтрофильный пептид человека 1 (HNP1),
кателицидин LL-37, а также тахиплезин I. Во всех случаях локализация зрелых АМП была предсказана верно, т.е. на
C-конце  (HNP1,  LL-37)  или  в  середине  последовательности  предшественника  (тахиплезин  I).  Исследование
обеспечивает простой для интерпретации метод предсказания антимикробной и гемолитической активности пептидов
и их идентификации в крупных белках.

Ключевые слова:  антимикробные  пептиды,  альтернативные антибиотики,  пептиды,  гемолитические  пептиды,
машинное обучение. 

Introduction 
The antibiotic resistance crisis is considered as a major challenge for modern medicine and raises questions of obtaining

alternative antimicrobials [1], [2]. Antimicrobial peptides (AMPs) represent a group of promising candidates due to their high
anti-pathogen activity in the low micromolar range of concentrations,  a broad spectrum of targets and a low potential  to
provoke bacterial resistance [3], [4]. AMPs act as effector molecules of innate immunity of virtually all living organisms.
Although AMPs are a highly diverse and difficult-for-classification group of biologically active peptides, most of them possess
a common set of physicochemical properties. Typically, they are amphipathic peptides with spaced clusters of cationic and
hydrophobic amino acid residues (a.a.). The primary mechanism of their action includes adsorption on negatively charged
molecules  of pathogenic surface due to electrostatic  interactions and insertion into the lipid bilayer of  the cell.  The pore
formation results in efflux of vital ions and metabolites and eventually to the target cell death, although alternative mechanisms
of AMPs action have been described [5], [6].

The main and well-described AMPs of human innate immunity are cathelicidin LL-37 [7] and human neutrophil peptides
(HNPs) [8].
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In spite of indisputable advantages, AMPs have not yet become a commonly prescribed antimicrobial drugs. One of the
recognized limitations of AMPs implementation is cytotoxicity, i.e. the action on host cell membranes. In most pipelines of
AMPs elaboration, cytotoxicity is evaluated in hemolytic assays [9]. Clinically prospective AMPs are expected to have high
selectivity of action.

In the context of the AMPs action as a double-edged sword, databases of antimicrobial and hemolytic peptides (HPs) have
been created. The databases and existing predictive tools are reviewed in [10], [11], [12]; a more detailed review passage on
tools  for  cytotoxic peptides'  prediction can be found in a  recent  research  paper  [13].  Experimentally  validated  peptides’
antimicrobial and hemolytic action is a tempting pool of data for machine learning (ML). Methods of AMPs prediction using
ML include support-vector machine, hidden Markov models, random forest, artificial neuronal networks, decision tree, K-
nearest  neighbor, linear discriminant analysis, in addition to others. While quantitative models intend to predict minimum
inhibitory concentration (MIC) or analogous numeric characteristics of a peptide’s activity, qualitative models are binary-type
tools distinguishing between AMPs and non-AMPs or HPs and non-HPs. The qualitative approach seems to have advantages
since  protocols  of  antimicrobial  and  hemolytic  activity  measurement  are  not  strictly  standardized,  and  exact  active
concentrations can vary greatly depending on experimental conditions, a specific target, i.e. microbial strain or a source of red
blood cells, etc. Logistic regression (LR) is not a widely spread method of prediction among available servers, but it is easy for
use and interpretation and has been used for AMPs prediction [14].

Search of novel AMPs may build on known sequences of large proteins. Some of them are precursors of well-described
AMPs typically containing a signal peptide at the N-terminus and a fragment corresponding to a mature AMP (in addition,
other domains can be present). Nevertheless, peptides with antimicrobial activity may be derived from large proteins without
described  direct  antimicrobial  action.  This  may  occur  under  physiological  proteolysis,  as  it  was  demonstrated  for
anaphylatoxins, i.e. the derivatives of complement proteins C3, C4, C5 [15], [16], [17], [18], and α-melanocyte stimulating
hormone, i.e. the proopiomelanocortin derivative [19]. Identification of AMPs in large proteins utilizes the concept of a sliding
window to screen the whole input sequence. Such type of peptides search is available via some web-servers. However, they
have some disadvantages. The AMPA server [20] is adapted for narrow sliding windows and, in our experience, does not
predict the location of actual active fragments even in such classic AMPs as human defensins and cathelicidin LL-37-related
peptides. Another server, Antifp [21] is restricted to the prediction of antifungal peptides. Moreover, to our knowledge, LR has
never been applied for revealing promising fragments in proteins sequences.

Since we conclude that there is a lack of easy-for-interpretation and validated for a broad spectrum of peptides models for
AMPs and HPs prediction, including that from long sequences, we aimed to elaborate a new approach based on LR.

1.1. Abbreviations
a.a. – Amino acid residue; AAC – mino-acid composition; AMP – antimicrobial peptide; AUC – area under curve; df –

degrees of freedom; HP – hemolytic peptide; LR – logistic regression; MIC – minimum inhibitory concentration; MCC –
Matthews correlation coefficient; ML – machine learning; ROC – receiver operating characteristic; VIF – variance inflation
factor

Research methods and principles 
2.1. The general algorithm of the study
The general algorithm of the work is represented in the Fig. 1. The study design includes two consecutive parts: ML and

AMPs identification in large protein sequences.  ML was performed to build models for both antimicrobial  and hemolytic
activity prediction. Positive and negative datasets were filtered, used in training and validation in order to construct predictive
models.  The  model  for  AMPs  prediction  was  applied  for  identification  of  promising  sequences  of  well-known  AMPs
precursors.

Figure 1 - The general algorithm of the study
DOI: https://doi.org/10.60797/jbg.2024.26.5.1

2.2. Machine learning
2.2.1. Antimicrobial activity: positive dataset
DBAASP (the Database of Antimicrobial Activity and Structure of Peptides) was used as a source of positive dataset

containing  naturally  occurring  and artificial  AMPs [22].  The database  was  filtered  as  follows:  only monomeric  peptides
without modifications, unusual and D-amino acids, without “X” as an a.a., having MIC as described target activity value and
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MIC < 50 μg/mL, acting on lipid bilayer of gram-positive and/or gram-negative bacteria.  The length from 20 to 50 was
considered optimal. Too short and too long peptides were avoided for some reason. For example, amino-acid composition
(AAC) value was intended to be used in ML (see Section 2.2.4) but a single a.a. in a very short peptide would give a very high
AAC value and, at the same time, too many a.a. would have AAC value equal to 0. On the other hand, too long sequences are
not prospective for synthesis and implementation. Besides, the use of sequences in a very wide window of lengths would make
the dataset less uniform. Among duplicates (i.e., rows corresponding to one peptide with numerous target species) only one
representative was retained while other representatives were excluded. Importantly, they were removed after MIC filtration
was performed, so all active peptides were preserved in the positive set.

The data redundancy problem was solved by using CD-HIT, which is a widely used algorithm for sequences clustering and
comparison [23],  [24],  [25].  Instead of  a  standard program, the analogous cdhit()  function from the CellaRepertorium R
package was used. Before that, sequences were transformed to the AAString object  format using the Biostrings package.
Identity level 0.85 was used to generate a non-redundant dataset.

2.2.2. Hemolytic activity: positive dataset
The positive set of HPs was the assembled by combining positive datasets from the HAPPENN database [26]: HemoPI-1

main positive, HemoPI-1 validation positive, HemoPI-2 main positive, HemoPI-2 validation positive, HemoPI-3 main positive,
HemoPI-3 validation positive.  Peptides  of  the length 20-50 were retained.  CH-HIT was used to  remove similar  peptides
(identity 0.85).

2.2.3. Negative dataset
The negative dataset was extracted from UniProt, which is a comprehensive database containing polypeptide sequences

with functional information [27]. Similarly to the positive dataset of AMPs, only 20-50-a.a peptides without modifications,
unusual  a.a.,  sequence  caution  were  selected.  Entries  with  keywords  “antimicrobial”,  “antibacterial”,  “toxin”,  “toxic”,
“cytotoxin”, “hemolysin”, “hemolysis”, “cytolysin” were excluded. Then the reviewed database (SwissProt) was used for the
final negative set formation. Duplicates and redundant peptides were excluded as described above. The negative dataset was
used in the both antimicrobial and hemolytic ML models.

2.2.4. Performance of machine learning
In the both models, sizes of positive and negative datasets were equal, i.e. the datasets were balanced. This was reached by

random exclusion of sequences from the negative dataset. For the both ML pipelines, CD-HIT was used to control possible
similarities between positive and negative sets to ensure that they were different enough with the identity cut-off 0.85. Before
the performance of ML, all datasets were randomized. All datasets were split to obtain a training set (80%) and test set (20%).

For all peptides, a number of properties was calculated. Peptides R package was used to calculate net charge at pH 7.0,
hydrophobicity (scale Fasman was selected in preliminary models as leading to the best model performance), hydrophobic
moment at the angle ϑ = 96° [28]. Amino-acid composition (AAC) was calculated using protr package.

LR was used to estimate probability of antimicrobial or hemolytic capacity. LR is a statistical method applying sigmoid
function  operating  with  probabilities  to  linearize  the  data.  Logit  function  of  probability  of  a  positive  outcome

 is  calculated  as  intercept  plus  linear  combination  of  predictors  multiplied  by  their

coefficients βi (weights):

Therefore,

The optimal cut-off can be used to predict the outcome in a binary manner.
Features selection was a critical step in the modelling. It can be said that no rigorous algorithms were used to make a final

list of predictors. However, several rules were used to construct models of acceptable quality. Since LR belongs to the class of
generalized linear models, it is sensitive to multicollinearity. Correlated features were excluded in such a way to preserve as
more as possible features. Methionine residues were excluded from the final list of the features since methionine represents the
first  a.a.  in immature peptides from the negative sets downloaded from UniProt;  inclusion of  methionine residues would
produce bias towards prediction of polypeptides with preserved signal peptides regardless their actual biological activity. ML
using LR was performed using R function glm().  The most significant predictors  were selected.  After  features  selection,
variance inflation factor (VIF) was calculated to finally make sure that no relations are present in the list of predictors. In the
both models, the number of predictors was considerably less than the number of observations in both positive and negative
groups. Besides, the models' fitness was estimated by χ2:

and p-value was calculated for degrees of freedom (df) equal to the difference between df in the null model (intercept-only
model) and the model with predictors (in other words, to the number of predictors). Density plots were built to visualize the
distribution of predictors between the positive and the negative group in training sets. 

As the output of each of the models, formulae for calculation of LR probabilities (i.e., pAntimicrobial or pHemolytic) were obtained.
One way or another, predictive power rather than formal correctness was the main criterion of the models' quality. Models

validation was performed on test sets, and standard parameters were calculated for estimation of the models quality using
confusion matrices  (TP – true positive,  TN – true  negative,  FP – false  positive,  FN – false negative;  MCC – Matthews
correlation coefficient):
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Interpretation of these parameters can be found elsewhere. The parameters were calculated for cut-offs 0.35, 0.4, …, 0.85.
ROC (receiver  operating characteristic)  analysis  was performed using pROC R package.  Density  plots  were built  to

visualize distribution of predicted pAntimicrobial or pHemolytic values by actual positive and negative groups.
2.3. Prediction of AMPs from precursor proteins
The model for AMPs prediction was applied for recognition of well-known AMPs in their precursor proteins. Mature

peptides cathelicidin LL-37 (UniProt ID 49913), α-defensin HNP1 (UniProt ID P59665) comprise C-terminal parts of their
precursor molecules. In contrast, tachyplesin I (UniProt ID P14213) is located in the middle part of its unprocessed precursor.
The  three  peptides  belong  to  different  structural  classes:  LL-37  is  α-helical,  HNP1  contains  3  antiparallel  β-strands,  a
disordered linker and is stabilized by three disulfide bonds; tachyplesin I is a relatively short β-hairpin. They also belong to
different taxa – human and invertebrates, namely horseshoe crabs [29].

The concept of the sliding window was applied to screen a whole sequence (Fig. 2). Let L be the length of the peptide, L' is
the length of the sliding window, l is the position of the rightmost (i.e., C-terminal) a.a. within the window at any step of the
sequence screening. Therefore,  the position of the leftmost (i.e.,  N-terminal) a.a.  within the window is  l-L'+1.  Obviously,
L' l L⩽ ⩽  and l = Step + L’ – 1. Starting from l=L' (step 1) the window is shifted by one position at every other step, and L-L'+1
steps  are  performed  for  each  peptide.  At  any  step,  pAntimicrobial was  calculated,  and  pAntimicrobial values  were  plotted  against
pAntimicrobial values.

Figure 2 - The sliding window applied to the AMPs recognition in proteins 
DOI: https://doi.org/10.60797/jbg.2024.26.5.2

Note: L is the length of the peptide, L' is the length of the sliding window, l is the position of the C-terminal a.a. within the
window

2.4. Software
The study was performed using R language (v4.3.0) in the RStudio integrated development environment (2023.03.0) (R

Core Team (2023)) [30]. The following R packages were used: Biostrings v2.68.1, car v3.1-2 [31], CellaRepertorium v1.10.0,
dplyr v1.1.2 [32], ggplot2 v3.4.2 [33], ggpubr v0.6.0 [34], Peptides v2.4.5 [35], pROC v1.18.2 [36], protr v1.6-3 [37].

Main results 
3.1. Results of machine learning
Data redundancy and distribution of cluster sizes is demonstrated in the Fig. 3. Although many peptides were quite distinct

from others in each of the three datasets, numerous clusters of different sizes (up to 46 peptides) were found.
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Figure 3 - Distribution of cluster sizes in redundant datasets: 
A – Antimicrobial positive; B – Negative; C – Hemolytic positive

DOI: https://doi.org/10.60797/jbg.2024.26.5.3

Non-redundant  datasets  were  obtained  and  used  for  ML.  All  used  datasets  can  be  found  in  supplementary  files:
test_set_ANTIMICROBIAL.xlsx,  test_set_HEMOLYTIC.  xlsx,  training_set_ANTIMICROBIAL.  xlsx,
training_set_HEMOLYTIC. xlsx; all calculated features are represented in the files. The sizes of the sets are shown in Tables 1
and 2. 2670 peptides were present in the set for antimicrobial activity prediction and 780 peptides were used for hemolytic
activity prediction. The datasets were balanced 1:1 (positive : negative) and split 80%:20% (training set : test set).

Table 1 - Sizes of sets used in ML for antimicrobial activity prediction

DOI: https://doi.org/10.60797/jbg.2024.26.5.4

Set Split Number of peptides

AMP (1335)
Training set: 80% 1068

Test set: 20% 267

Non-AMP (1335)
Training set: 80% 1068

Test set: 20% 267

 
Training set: 80% (2136)

Test set: 20% (534)
Sum: 2670

Table 2 - Sizes of sets used in ML for hemolytic activity prediction

DOI: https://doi.org/10.60797/jbg.2024.26.5.5

Set Split Number of peptides

Hemolytic (390)
Training set: 80% 312

Test set: 20% 78

Non-hemolytic (390)
Training set: 80% 312

Test set: 20% 78

 
Training set: 80% (624)

Test set: 20% (156)
Sum: 780

The results of prediction of both antimicrobial and hemolytic activity are represented in Table 3. Hydrophobic moment,
proportions of alanine, cysteine, glycine, histidine, leucine, lysine, phenylalanine, proline, tryptophan produce positive effect
on logit(pAntimicrobial);  in contrast, aspartate,  glutamate and valine produce negative effect. Essentially the same results were
obtained  in  the  hemolytic  prediction  model.  In  all  cases,  VIF  was  about  1  indicating  the  absence  of  significant
multicollinearity.  The  expected  results  clearly  demonstrate  that  the  features  predisposing  peptides  to  antimicrobial  and
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hemolytic activity are co-directed. The coefficients in the equations are in accordance with the distribution of the predictors by
positive and negative groups (Fig. 4 and Fig. 5) suggesting that the equations are biologically relevant

 

Figure 4 - Distribution of all predictors (features) by the groups of AMPs and non-AMPs in the training set

DOI: https://doi.org/10.60797/jbg.2024.26.5.7

Note: plots of the selected predictors are bordered

6

Table 3 - Predictors used in the two models
DOI: https://doi.org/10.60797/jbg.2024.26.5.6 

 

Note: green and red cells correspond to predictors with positive or negative effect on the dependent variable, respectively;
AAC(X) – Amino-acid composition value of a residue X (name of an amino acid in standard one-letter code); n.s. – non-
significant
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Figure 5 - Distribution of the all predictors (features) by the groups of hemolytic and non-peptides in the training set

DOI: https://doi.org/10.60797/jbg.2024.26.5.8

Note: plots of the selected predictors are bordered

Essential models parameters are represented in Table 4. It can be concluded the addition of 13 predictors to the intercept-
only models significantly improves their fitness.

Table 4 - Essential parameters of the models

DOI: https://doi.org/10.60797/jbg.2024.26.5.9

Parameter
Model

Antimicrobial activity prediction Hemolytic activity prediction

Null deviance (null model) 2961.1 865.05

df (null model) 2135 623

Residual deviance (model with
predictors)

1610.6 418.09

df (model with predictors) 2122 610

χ2 1350.5 449.96

df (number of predictors, i.e. df
in the model with predictors – df

in the null model)
13 13

p-value << 0.001 << 0.001

Validation on test sets was performed. The estimated optimal (maximum accuracy) probability cut-off for antimicrobial
activity prediction was 0.6; for hemolytic activity – 0.55. For antimicrobial activity prediction, accuracy = 0.86, sensitivity =
0.82, specificity = 0.90, precision = 0.91, F-measure = 0.86, MCC = 0.72. For hemolytic activity prediction, accuracy = 0.88,
sensitivity = 0.87, specificity = 0.91, precision = 0.91, F-measure = 0.89, MCC = 0.77. Confusion matrices and the calculated
parameters  for  cut-offs  0.35,  0.4,  0.45,  …, 0.85 are represented in  supplementary  file  Quality_of_prediction.xlsx (Sheets
“Antimicrobial” and “Hemolytic”),  and optimal cut-offs are colored in yellow for each of the models. ROC analysis was
performed for estimation of the predictive quality of the two models (Fig. 6). ROC AUC for the first model was 0.914, and for
the  second  model  –  0.933.  Briefly,  the  both  models  can  be  considered  as  adequately  describing  both  antimicrobial  and
hemolytic activity.
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Figure 6 - Results of ROC analysis of antimicrobial (A) and hemolytic (B) activity prediction
DOI: https://doi.org/10.60797/jbg.2024.26.5.10

Further, density plots were constructed for the both predictive models: predicted PAntimicrobial (Fig. 7, A) and PHemolytic (Fig. 7,
B) are distributed with respect to the actual groups.

Figure 7 - Results of antimicrobial and hemolytic activity prediction (validation on test sets): 
A – Performance of the model for antimicrobial activity prediction; B – Performance of the model for hemolytic activity

prediction
DOI: https://doi.org/10.60797/jbg.2024.26.5.11

Note: orange density plots correspond to positive groups and grey plots correspond to negative groups; red vertical lines
represent optimal cut-offs for distinguishing between positive and negative groups (0.6 for the AMPs model and 0.55 for the
HPs model)

To sum up, two models for prediction of antimicrobial and hemolytic activity of peptides were constructed and estimated
to have promising predictive potency. As such, these models can be used can be used for prediction of AMPs and HPs in large
sequences.

3.2. Results of mature AMPs identification in their precursor proteins
The formula extracted from the AMPs predictive model was applied to reveal active peptides in their precursors. First, LL-

37 was used for the algorithm validation. LL-37 precursor includes 170 a.a., and the mature peptide comprises a.a. 134–170
(the length is 37 a.a.). Indeed, a clear increase in pAntimicrobial can be seen at the C-terminus of the precursor after its screening by
the sliding windows of lengths 20, 37 and 50 (Fig. 10). Alongside with this, N-terminal peptides also possessed high pAntimicrobial

values;  for 20-a.a. sliding window, active peptides were revealed in the center of the sequence (Fig 10,  A),  this was less
pronounced for 37- and 50-a.a. windows (Fig. 10, B, C).
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Figure 8 - Prediction of LL-37 localization in its precursor protein: 
l is the rightmost a.a. in the sliding window, pAntimicrobial is probability of antimicrobial activity, L' is the sliding window length (A

– 20, B – 37 and C – 50 amino acid a.a.)
DOI: https://doi.org/10.60797/jbg.2024.26.5.12

Note: the actual mature LL-37 length is 37 a.a. The dashed horizontal line represents the estimated optimal cut-off for AMPs
prediction (0.6)

HNP1 precursor includes 94 a.a.,  and the mature peptide comprises  a.a.  65–94 (the length is  30 a.a.).  As for  LL-37
prediction, pAntimicribial was undoubtedly increased at the C-terminus and some active peptides were recognized in the middle of
the sequence (Fig. 9).
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Figure 9 - Prediction of HNP1 localization in its precursor protein: 
l is the rightmost a.a. in the sliding window, pAntimicrobial is probability of antimicrobial activity, L' is the sliding window length (A

– 20 a.a.; B – 30 a.a. and C – 50 a.a.)
DOI: https://doi.org/10.60797/jbg.2024.26.5.13

Note: the actual mature HNP1 length is 30 a.a.; the dashed horizontal line represents the estimated optimal cut-off for AMPs
prediction (0.6)

Tachyplesin I was used to illustrate recognition of AMPs in precursors containing mature peptides located not at their C-
termini but in the middle part of the molecule. Tachyplesin precursor contains 77 a.a., and the AMP comprises positions 24–40
(the length is 17 a.a.). Fig. 10 demonstrates a great prediction of tachyplesin I in the protein with the sole pAntimicrobial maximum
around the position , i.e. the rightmost a.a. of the AMP sequence.

Figure 10 - Prediction of Tachyplesin I localization in its precursor protein: 
l is the rightmost a.a. in the sliding window, pAntimicrobial is probability of antimicrobial activity, L' is the sliding window length

(the only variant corresponding to the actual tacheplesin I length, i.e. 17 a.a.)
DOI: https://doi.org/10.60797/jbg.2024.26.5.14
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Note: the dashed horizontal line represents the estimated optimal cut-off for AMPs prediction (0.6)

Discussion 
The study includes two successive parts: ML and AMPs prediction from large proteins. The main idea used for prediction

of AMPs and HPs was to reveal  key structural  and physicochemical parameters which are different between positive and
negative peptides and to use them as predictors in logistic regression. As expected, predictors in the two models appeared to be
co-directed (see Section 3.1). The effects of the selected features are consistent  with typical  parameters of AMPs widely
described in literature (see Introduction) and are in accordance with the distribution of the peptides characteristics illustrated in
Fig.  4  and Fig 5.  Ideally,  prediction of  hemolytic  activity  should be based  on direct  comparison of  hemolytic  and  non-
hemolytic AMPs, which would require a special database.

In the present study, only antibacterial peptides were selected from the original database, but both gram-positive and gram-
negative bacteria were included as targets. Indeed, the vast majority of the peptides in the original database were active against
these two groups of microorganisms simultaneously. A negligible portion of AMPs were active strictly against one target group
other than bacteria (this was the case for fungi, viruses but was not observed for cancers, mammalian cells and parasites). Most
predictive tools  deal  with general  antimicrobial  activity,  although some algorithms attempt  to  distinguish between AMPs
activities by performing multi-label classification [38], [39]. Nevertheless, this approach was considered as redundant in the
present study since one of the main traits of most AMPs is their wide spectrum of activity – antiviral, antiparasitic, antifungal,
antitumor, often simultaneously [6]. As such, the built dataset may be relevant for description of AMPs with a wide spectrum
of taxonomic targets.

In this study, cytotoxic activity was identified with hemolytic activity, which is not completely correct. Actually, different
cell lines and red blood cells from different species demonstrate different susceptibility to the peptides’ membranolytic action
depending on their membrane lipid content [40]. However, it is difficult to take into account all possible side targets of AMPs
due to their enormous variety, and hemolytic activity is a standard measure of AMPs toxic capacity. It should also be noted that
cytotoxicity is not the sole limitation of AMPs implementation into the clinic. Stability in vivo, action on humoral targets [41]
and a high cost of synthesis should be controlled during elaboration of novel AMPs.

We intended to elaborate an approach to reveal AMPs in long protein sequences. To validate the proposed model, we used
precursor  sequences  of  well-described  AMPs  because  such  sequences  undoubtedly  contain  either  non-antimicrobial  or
antimicrobial fragments corresponding to mature AMPs. The lengths of LL-37 and HNPs lie within the range 20–50 used for
ML,  so  the  sliding  windows lengths  applied  for  the  sequences'  analysis  were  20  (the  minimum possible  size),  50  (the
maximum possible size) and exactly equal to the AMP’s length. In both cases, the C-terminal localization of the AMPs was
correctly predicted (Fig. 8–10). Tachiplesin I was used as an example of AMP which is located in the middle but not at the C-
terminus  of  its  precursor.  This  AMP includes  17 a.a.  and  is  shorter  than  peptides  participating  in  ML.  Nevertheless,  an
excellent prediction was made by the algorithm (Fig. 10). To sum up the results of the prediction, the proposed algorithm is
effective at search for AMPs in proteins but many false positive discoveries were detected, especially for LL-37 and HNP1
prediction. Adjustment of the sliding window lengths and the cut-off levels may be beneficial for a particular research task
solution. It should be also noted that antimicrobial activity can be possessed not only by the natural AMPs of the given lengths
but also by slightly longer or shorter peptides. The preservation of activity of shorter AMPs derived from their longer parents is
a desirable strategy but also a common challenge in AMPs elaboration pipelines [42], [43].

In  principle,  the  suggested  algorithm may be used  for  a)  discovery  of  natural  AMPs primarily  serving  as  defensive
molecules of immune systems in different species;  b) revealing endogenous peptides with possible antimicrobial  function
releasing  from  proteins  which  are  known  to  undergo  proteolytic  cleavage,  including  that  related  to  immune  response
(complement cascade [44], blood clotting [45], etc.); c) search for antimicrobial domains in large proteins with miscellaneous
functions. In all cases, the revealed peptides can be used as templates for further design of AMP-based drugs.

Conclusion 
In this study, we proposed an approach combining ML by multiple LR and AMPs recognition in large proteins, namely in

their precursors. Firstly, two predictive models of acceptable quality were constructed. Secondly, the use of the equations
coefficients allowed to identify regions corresponding to mature AMPs correctly,  although further  improvements  may be
beneficial for enhancement of prediction quality.

11



Journal of Bioinformatics and Genomics ▪ № 4 (26) ▪ December

Дополнительные материалы Supplementary materials
Дополнительные материалы доступны на онлайн-
странице статьи.

Supplementary materials are available online on the article’s 
webpage.

Финансирование Funding
State assignment 122020300189-6. Государственное задание №122020300189-6.

Благодарности Acknowledgement
Автор выражает благодарность к.б.н. М.Н. Берлову и 
к.х.н. М.М. Хайдуковой за их ценные комментарии.

The author expresses his acknowledgements to Dr. 
M.N.Berlov and Dr. M.M.Khaydukova for their valuable 
comments.

Конфликт интересов Conflict of Interest
Не указан. None declared.

Рецензия Review
Все статьи проходят рецензирование. Но рецензент или 
автор статьи предпочли не публиковать рецензию к этой 
статье в открытом доступе. Рецензия может быть 
предоставлена компетентным органам по запросу.

All articles are peer-reviewed. But the reviewer or the author 
of the article chose not to publish a review of this article in 
the public domain. The review can be provided to the 
competent authorities upon request.

Список литературы на английском языке / References in English
1. Ventola C.L. The antibiotic resistance crisis: part 1: causes and threats / C.L. Ventola // Pharmacy and Therapeutics. —

2015. — Vol. 40. — № 4. — P. 277. 
2. Ventola C.L. The antibiotic resistance crisis: part 2: management strategies and new agents / C.L. Ventola // Pharmacy

and Therapeutics. — 2015. — Vol. 40. — № 5. — P. 344. 
3. Ghosh C. Alternatives to conventional antibiotics in the era of antimicrobial resistance / C. Ghosh [et al.] // Trends in

Microbiology. — 2019. — Vol. 27. — № 4. — P. 323–338. 
4. Rončević T. Antimicrobial  peptides as anti-infective agents in pre-post-antibiotic era? / T. Rončević,  J.  Puizina,  A.

Tossi // International Journal of Molecular Sciences. — 2019. — Vol. 20. — № 22. — P. 5713. 
5. Hale  J.D.F.  Alternative  mechanisms of  action of  cationic antimicrobial  peptides  on bacteria  /  J.D.F.  Hale,  R.E.W.

Hancock // Expert Review of Anti-infective Therapy. — 2007. — Vol. 5. — № 6. — P. 951–959. 
6. Zhang Q.Y. Antimicrobial peptides: mechanism of action, activity and clinical potential / Q.Y. Zhang [et al.] // Military

Medical Research. — 2021. — Vol. 8. — P. 1–25. 
7. Ridyard K.E. The potential  of human peptide LL-37 as an antimicrobial  and anti-biofilm agent  /  K.E.  Ridyard,  J.

Overhage // Antibiotics. — 2021. — Vol. 10. — № 6. — P. 650. 
8. Lehrer R.I. α‐Defensins in human innate immunity / R.I. Lehrer, W. Lu // Immunological Reviews. — 2012. — Vol.

245. — № 1. — P. 84–112. 
9. Panteleev P.V. Design of antimicrobial peptide arenicin analogs with improved therapeutic indices / P.V. Panteleev [et

al.] // Journal of Peptide Science. — 2015. — Vol. 21. — № 2. — P. 105–113. 
10. Ramazi S. A review on antimicrobial peptides databases and the computational tools / S. Ramazi [et al.] // Database.

— 2022. — Vol. 2022. — P. baac011. 
11. Agüero-Chapin G. Emerging computational approaches for antimicrobial peptide discovery / G. Agüero-Chapin [et

al.] // Antibiotics. — 2022. — Vol. 11. — № 7. — P. 936. 
12. Wang  G.  Machine  learning  prediction  of  antimicrobial  peptides  /  G.  Wang,  I.I.  Vaisman,  M.L.  van  Hoek  //

Computational Peptide Science: Methods and protocols. — New York : Springer US, 2022. — P. 1–37. 
13. Ebrahimikondori H. Structure‐aware deep learning model for peptide toxicity prediction / H. Ebrahimikondori [et

al.] // Protein Science. — 2024. — Vol. 33. — № 7. — P. e5076. 
14. Randou E.G. Binary response models for recognition of antimicrobial peptides / E.G. Randou, D. Veltri, A. Shehu //

Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics. — 2013.
— P. 76–85. 

15. Nordahl  E.A.  Activation  of  the  complement  system  generates  antibacterial  peptides  /  E.A.  Nordahl  [et  al.]  //
Proceedings of the National Academy of Sciences. — 2004. — Vol. 101. — № 48. — P. 16879–16884. 

16. Pasupuleti M. Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans / M.
Pasupuleti [et al.] // Journal of Biological Chemistry. — 2007. — Vol. 282. — № 4. — P. 2520–2528. 

17. Sonesson A. Antifungal activity of C3a and C3a-derived peptides against Candida / A. Sonesson [et al.] // Biochimica
et Biophysica Acta (BBA)-Biomembranes. — 2007. — Vol. 1768. — № 2. — P. 346–353. 

18. Zhang X.J. Insights into the antibacterial properties of complement peptides C3a, C4a, and C5a across vertebrates /
X.J. Zhang [et al.] // The Journal of Immunology. — 2022. — Vol. 209. — № 12. — P. 2330–2340. 

19. Singh M. Alpha‐melanocyte stimulating hormone: an emerging anti‐inflammatory antimicrobial peptide / M. Singh,
K. Mukhopadhyay // BioMed Research International. — 2014. — Vol. 2014. — № 1. — P. 874610. 

20. Torrent M. AMPA: an automated web server for prediction of protein antimicrobial regions / M. Torrent [et al.] //
Bioinformatics. — 2012. — Vol. 28. — № 1. — P. 130–131. 

21. Agrawal P. In silico approach for prediction of antifungal peptides / P. Agrawal [et al.] // Frontiers in Microbiology. —
2018. — Vol. 9. — P. 323. 

22. Pirtskhalava M. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for
development of new therapeutics / M. Pirtskhalava [et al.] // Nucleic Acids Research. — 2021. — Vol. 49. — № D1. — P.
D288–D297. 

12



Journal of Bioinformatics and Genomics ▪ № 4 (26) ▪ December

23. Li W. Clustering of highly homologous sequences to reduce the size of large protein databases / W. Li, L. Jaroszewski,
A. Godzi // Bioinformatics. — 2001. — Vol. 17. — № 3. — P. 282–283. 

24. Li  W.  Tolerating  some  redundancy  significantly  speeds  up  clustering  of  large  protein  databases  /  W.  Li,  L.
Jaroszewski, A. Godzik // Bioinformatics. — 2002. — Vol. 18. — № 1. — P. 77–82. 

25. Li W. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences / W. Li, A.
Godzik // Bioinformatics. — 2006. — Vol. 22. — № 13. — P. 1658–1659. 

26. Timmons P.B. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs
neural networks / P.B. Timmons, C.M. Hewage // Scientific Reports. — 2020. — Vol. 10. — № 1. — P. 10869. 

27. UniProt: the universal protein knowledgebase in 2023 // Nucleic Acids Research. — 2023. — Vol. 51. — № D1. — P.
D523–D531. 

28. Vishnepolsky B. Prediction of linear cationic antimicrobial  peptides based on characteristics responsible for their
interaction with the membranes / B. Vishnepolsky, M. Pirtskhalava // Journal of Chemical Information and Modeling. — 2014.
— Vol. 54. — № 5. — P. 1512–1523. 

29. Nakamura T. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus
tridentatus). Isolation and chemical structure / T. Nakamura [et al.] // Journal of Biological Chemistry. — 1988. — Vol. 263. —
№ 32. — P. 16709–16713. 

30. R: A Language and Environment for Statistical Computing / R Foundation for Statistical Computing. — Vienna. 
31. Fox J. An R companion to applied regression / J. Fox, S. Weisberg. — Sage publications, 2018. 
32. Wickham H. dplyr: a grammar of data manipulation. R package version 1.1. 2 / H. Wickham [et al.] // Computer

Software. — 2023. 
33. Wickham H. Data analysis / H. Wickham. — Springer International Publishing, 2016. — P. 189–201. 
34. Kassambara A. ggpubr:'ggplot2'based publication ready plots / A. Kassambara // R package version. — 2018. — P. 2. 
35. Osorio D. Peptides: a package for data mining of antimicrobial peptides / D. Osorio, P. Rondón-Villarreal, R. Torres //

Small. — 2015. — Vol. 12. — P. 44–444. 
36. Robin X. pROC: an open-source package for R and S+ to analyze and compare ROC curves / X. Robin [et al.] //

BMC Bioinformatics. — 2011. — Vol. 12. — P. 1–8. 
37. Xiao  N.  protr/ProtrWeb:  R package and  web server  for  generating  various numerical  representation  schemes  of

protein sequences / N. Xiao [et al.] // Bioinformatics. — 2015. — Vol. 31. — № 11. — P. 1857–1859. 
38. Chung C.R. Characterization and identification of antimicrobial peptides with different functional activities / C.R.

Chung [et al.] // Briefings in Bioinformatics. — 2020. — Vol. 21. — № 3. — P. 1098–1114. 
39. Lin W. Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types / W. Lin, D.

Xu // Bioinformatics. — 2016. — Vol. 32. — № 24. — P. 3745–3752. 
40. Belokoneva O.S. The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sp

hingomyelin ratio in lipid bilayers / O.S. Belokoneva [et al.] // Biochimica et Biophysica Acta (BBA)-Biomembranes. — 2003.
— Vol. 1617. — № 1-2. — P. 22–30. 

41. Krenev I.A. In vitro modulation of complement activation by therapeutically prospective analogues of the marine
polychaeta arenicin peptides / I.A. Krenev [et al.] // Marine Drugs. — 2022. — Vol. 20. — № 10. — P. 612. 

42. Mazurkiewicz-Pisarek  A.  Antimicrobial  peptides:  challenging  journey  to  the  pharmaceutical,  biomedical,  and
cosmeceutical use / A. Mazurkiewicz-Pisarek, J. Baran, T. Ciach // International Journal of Molecular Sciences. — 2023. —
Vol. 24. — № 10. — P. 9031. 

43. Bucataru  C.  Antimicrobial  peptides:  Opportunities  and  challenges  in  overcoming  resistance  /  C.  Bucataru,  C.
Ciobanasu // Microbiological Research. — 2024. — P. 127822. 

44. Egorova E.V. Antimicrobial activity of the complement system / E.V. Egorova [et al.] // Medical Academic Journal. —
2023. — Vol. 23. — № 2. — P. 31–45. 

45. Wilhelm G. The crossroads of the coagulation system and the immune system: Interactions and connections / G.
Wilhelm [et al.] // International Journal of Molecular Sciences. — 2023. — Vol. 24. — № 16. — P. 12563. 

13


	МАТЕМАТИЧЕСКАЯ БИОЛОГИЯ, БИОИНФОРМАТИКА / MATHEMATICAL BIOLOGY, BIOINFORMATICS
	Machine learning using multiple logistic regression for antimicrobial and hemolytic peptides prediction and their identification in large proteins
	Krenev I.A.1, *
	Машинное обучение с применением множественной логистической регрессии для предсказания антимикробных и гемолитических пептидов и их обнаружения в крупных белках
	Кренев И.А.1, *

