Вернуться к статье

Машинное обучение с применением множественной логистической регрессии для предсказания антимикробных и гемолитических пептидов и их обнаружения в крупных белках

Table 1 - Essential parameters of the models

Parameter

Model

Antimicrobial activity prediction

Hemolytic activity prediction

Null deviance (null model)

2961.1

865.05

df (null model)

2135

623

Residual deviance (model with predictors)

1610.6

418.09

df (model with predictors)

2122

610

χ2

1350.5

449.96

df (number of predictors, i.e. df in the model with predictors – df in the null model)

13

13

p-value

<< 0.001

<< 0.001