APPLICATIONS OF SOME NEW TRANSMUTED CUMULATIVE DISTRIBUTION FUNCTIONS IN POPULATION DYNAMICS

Research article
DOI:
https://doi.org/10.18454/jbg.2017.1.3.2
Issue: № 1 (3), 2017
Published:
15.05.2017
PDF

References

  • Anguelov, R. & Markov, S. (2016). Hausdorff Continu-ous Interval Functions and Approximations, In: M. Nehmeier et al. (Eds), Scientific Computing, Computer Arithmetic, and Validated Numerics, 16th International Symposium, SCAN 2014, LNCS 9553, 3-13, Springer. doi:10.1007/978-3-319-31769-4

  • Aryal, G. R. (2013). Transmuted log-logistic distribution. Journal of Statistics Applications and Probability, 2 (1), 11-20.

  • Aryal, G. R. & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application, Nonlinear Analysis: Theory, Methods and Applications, 71 (12), 1401-1407.

  • Costarelli, D. & Spigler, R. (2013). Constructive Ap-proximation by Superposition of Sigmoidal Functions. Analysis in Theory and Applications, 29 (2), 169-196. doi:10.4208/ata.2013.v29.n2.8

  • Gupta, R. G., Gupta, P. L. & Gupta, R. D. (1998). Mod-eling failure time data by Lehman alternatives. Communica-tions in Statistics, Theory and Methods, 27, 887-904.

  • Hausdorff, F. (2005). Set Theory (2 ed.), Chelsea Pub-lishing, New York, Republished by AMS-Chelsea.

  • Iliev, A., Kyurkchiev, N. & Markov, S. (2017a). On the Approximation of the step function by some sigmoid func-tions. Mathematics and Computers in Simulation, 133, 223-234. doi:10.1016/j.matcom.2015.11.005

  • Iliev, A., Kyurkchiev, N. & Markov, S. (2017b). A fami-ly of recurrence generated parametric activation functions with applications to neural networks. International Journal on Research Innovations in Engineering Science and Tech-nology (IJRIEST), 2 (1), 60-68.

  • Khan, M. & King, R. (2013). Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution. European Journal of Pure and Applied Mathematics, 6 (1), 66-88.

  • Kumar, D., Singh, U. & Singh, S. (2015a). A method of proposing new distribution and its application to Bladder cancer patients data. Journal of Statistics Applications & Probability Letters, 2 (3), 235-245.

  • Kumar, D., Singh, U. & Singh, S. (2015b). A new distri-bution using sine function and its application to Bladder cancer patients data. Journal of Statistics Applications & Probability, 4 (3), 417-427.

  • Kumar, D., Singh, U. & Singh, S. (2017). Lifetime dis-tribution: derived from some minimum guarantee distribu-tion. Sohag Journal of Mathematics, 4 (1), 7-11.

  • Kyurkchiev, N. (2015). On the Approximation of the step function by some cumulative distribution functions. Comptes rendus de l’Académie bulgare des Sciences, 68 (12), 1475-1482.

  • Kyurkchiev, N. (2016a). Mathematical Concepts in In-surance and Reinsurance. Some Moduli in Programming Environment MATHEMATICA. LAP LAMBERT Academic Publishing, Saarbrucken, 136 pp.

  • Kyurkchiev, N. (2016b). A family of recurrence gener-ated sigmoidal functions based on the Verhulst logistic function. Some approximation and modelling aspects. Biomath Communications, 3 (2), 18 pp. doi:10.11145/bmc.2016.12.171

  • Kyurkchiev, N. & Iliev, A. (2016). On the Hausdorff distance between the shifted Heaviside function and some generic growth functions. International Journal of Engi-neering Works, 3 (10), 73-77.

  • Kyurkchiev, N. & Markov S. (2016b). On the Hausdorff distance between the Heaviside step function and Verhulst logistic function. Journal of Mathematical Chemistry, 54 (1), 109-119. doi:10.1007/S10910-015-0552-0

  • Kyurkchiev, N. & Markov, S. (2014). Sigmoidal func-tions: some computational and modelling aspects. Biomath Communications, 1 (2), 30-48. doi:10.11145/j.bmc.2015.03.081

  • Kyurkchiev, N. & Markov, S. (2015). Sigmoid Func-tions: Some Approximation and Modelling Aspects. Some Moduli in Programming Environment Mathematica. LAP LAMBERT Academic Publishing, Saarbrucken.

  • Kyurkchiev, N. & Markov, S. (2016a). On the numerical solution of the general kinetic K-angle reaction system. Journal of Mathematical Chemistry, 54 (3), 792-805. doi:10.1007/s10910-016-0592-0

  • Kyurkchiev, N. & Markov, S. (2016c). Hausdorff ap-proximation of the sign function by a class of parametric activation functions. Biomath Communications, 3 (2), 11 pp.

  • Kyurkchiev, V. & Kyurkchiev N. (2017). A family of recurrence generated functions based on the ”half-hyperbolic tangent activation function”. Biomedical Statis-tics and Informatics, 2 (3). doi:10.11648/j.bsi.20170203.12

  • Kyurkchiev, V. & Kyurkchiev, N. (2015). On the Ap-proximation of the Step function by Raised-Cosine and Laplace Cumulative Distribution Functions. European International Journal of Science and Technology, 4 (9), 75–84.

  • Lente, G. (2015). Deterministic Kinetics in Chemistry and Systems Biology. Springer, New York.

  • Sendov, B. (1990). Hausdorff Approximations. Kluwer, Boston. doi:10.1007/978-94-009-0673-0