CELNETANALYZER: HIGH-PERFORMANCE JAVA PACKAGE FOR THE TOPOLOGICAL ANALYSIS OF CELLULAR NETWORKS

Main Article Content

Vasily Grinev
Dmitry Kushal
Vitaly Charapovich

Abstract

Summary: A simple-to-use Java-based software package CelNetAnalyzer was developed. CelNetAnalyzer is managed through a graphical user interface and it returns a comprehensive list of the topological indices including compositional complexity, degree and neighbourhood, clustering, distance, centrality and heterogeneity indices as well as simple cycles and Shannon information entropy of undirected networks. Comparative studies have shown that due to parallelization and use of enhanced and newly developed algorithms, CelNetAnalyzer calculates these parameters significantly faster than competitors.


Availability and Implementation: CelNetAnalyzer is an open-source project and free distributed for non-commercial use. Software package, source code, test network and the results of the topological analysis can be downloaded from website of the Department of Genetics at Belarusian State University (http://bio.bsu.by/genetics/grinev_software.html).


Supplementary information: Supplementary data are available at Journal of Bioinformatics and Genomics online.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Grinev, V., Kushal, D., & Charapovich, V. (2017). CELNETANALYZER: HIGH-PERFORMANCE JAVA PACKAGE FOR THE TOPOLOGICAL ANALYSIS OF CELLULAR NETWORKS. JOURNAL OF BIOINFORMATICS AND GENOMICS, (1 (3). https://doi.org/10.18454/jbg.2017.1.3.3
Section
Novel computational tools and databases

References

Aric, A.A., Schult, D.A. and Swart, P.J. (2008). Explor-ing network structure, dynamics, and function using Net-workX. In: Varoquaux G., Vaught T., Millman J. (eds). Proceedings of the 7th Python in Science Conference (SciPy 2008). Pasadena, USA, pp. 11-15.

Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T. and Albrecht, M. (2008). Computing topological parameters of biological networks. Bioinformatics, 24, 282-284. doi: 10.1093/bioinformatics/btm554

Barabási, A. L. and Oltvai, Z. N. (2004) Network biolo-gy: understanding the cell's functional organization. Nat. Rev. Genetic., 5, 101–113.

Batagelj, V. and Mrvar, A. (1998). Pajek – program for large network analysis. Connections, 21, 47-57.

Bonchev, D. and Buck, G. A. (2005) Quantitative measures of network complexity. In: Bonchev, D. and Rouvray, D. H. (eds). Complexity in chemistry, biology and ecology. Springer, New York, pp. 191–235.

Brandes, U. (2001) A faster algorithm for betweenness centrality. // J. Math. Sociol., 25, 163–177.

Chatr-Aryamontri, A., Breitkreutz, B.J., Heinicke, S., Boucher, L., Winter, A., Stark, C., Nixon, J., Ramage, L., Kolas, N., O’Donnell, L., Reguly, T., Breitkreutz, A., Sellam, A., Chen, D., Chang, C., Rust, J., Livstone, M., Oughtred, R., Dolinski, K. and Tyers, M. (2013). The Bi-oGRID interaction database: 2013 update. Nucleic Acids Research, 41, D816-D823. doi: 10.1093/nar/gks1158

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Com-plex Systems, 1695.

Del Rio, G. et al. (2009) How to identify essential genes from molecular networks? BMC Sys. Biol., 3, 102. DOI:10.1186/1752–0509–3–102.

Diestel, R. (2005) Graph theory. Springer-Verlag, Hei-delberg, ISBN 3–540–26182–6.

Dong, J. and Horvath, S. (2007) Understanding network concepts in modules. BMC Sys. Biol., 1, 24. DOI:10.1186/1752–0509–1–24.

Freeman, L. C. (1977) A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

Freeman, L. C. (1978) Centrality in social networks. Conceptual clarification. Soc. Networks, 79, 215–239.

Hartley, R. V. L. (1928) Transmission of information. Bell Sys. Tech. J., 7, 535–563.

Hu, H.–B. and Wang, X.–F. (2008) Unified index to quantifying heterogeneity of complex networks. Physica A, 387, 3769–3780.

MacNeil, L.T. and Walhout, A.J.M. (2011). Gene regula-tory networks and the role of robustness and stochasticity in the control of gene expression. Genome Research, 21, 645-657. doi: 10.1101/gr.097378.109

Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Ne-menman, I. and Califano, A. (2006). Reverse engineering cellular networks. Nature Protocols, 1, 663-672. doi: 10.1038/nprot.2006.106

Maslov, S. and Sneppen, K. (2002) Specificity and stability in topology of protein networks. Science, 296, 910–913.

Newman, M. E. J. (2005) A measure of betweenness centrality based on random walks. Soc. Networks, 27, 39–54.

Newman, M.E.J. (2010). Networks. An introduction. Ox-ford University Press, USA, 784 pp.

Shannon, C. E. (1948) A mathematical theory of com-munication. Bell Sys. Tech. J., 27, 379–423, 623–656.

Soffer, S. N. and Vazquez, A. (2005) Network clustering coefficient without degree-correlation biases. Phys. Rev., 71, 057101–1–057101–4.

Stelzl, U. et al. (2005) A human protein-protein interac-tion network: a resource for annotating the proteome. Cell, 122, 957–968.

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L.J. and von Mering, C. (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39, D561-568. doi: 10.1093/nar/gkq973

Watts, D. J. and Strogatz, S. H. (1998) Collective dy-namics of ‘small-world’ networks. Nature, 393, 440–442.

Yoon, J. et al. (2006) An algorithm for modularity anal-ysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics, 22, 3106–3108.